437. Path Sum III(二叉树的路径和之三)


You are given a binary tree in which each node contains an integer value.

Find the number of paths that sum to a given value.

The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).

The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.

Example:

root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

  10
 /  \
5   -3
/ \    \
3   2   11
/ \   \
3  -2   1

Return 3. The paths that sum to 8 are:

  1. 5 -> 3
  2. 5 -> 2 -> 1
  3. -3 -> 11

这道题让我们求二叉树的路径的和等于一个给定值,说明了这条路径不必要从根节点开始,可以是中间的任意一段,而且二叉树的节点值也是有正有负。那么我们可以用递归来做,相当于先序遍历二叉树,对于每一个节点都有记录了一条从根节点到当前节点到路径,同时用一个变量curSum记录路径节点总和,然后我们看curSum和sum是否相等,相等的话结果res加1,不等的话我们来继续查看子路径和有没有满足题意的,做法就是每次去掉一个节点,看路径和是否等于给定值,注意最后必须留一个节点,不能全去掉了,因为如果全去掉了,路径之和为0,而如果假如给定值刚好为0的话就会有问题,整体来说不算一道很难的题,参见代码如下:

class Solution {
public:
    int pathSum(TreeNode* root, int sum) {
        int res = 0;
        vector<TreeNode*> out;
        helper(root, sum, 0, out, res);
        return res;
    }
    void helper(TreeNode* node, int sum, int curSum, vector<TreeNode*>& out, int& res) {
        if (!node) return;
        curSum += node->val;
        out.push_back(node);
        if (curSum == sum) ++res;
        int t = curSum;
        for (int i = 0; i < out.size() - 1; ++i) { //从头结点开始往后删除,来查找中间段结点数之和为sum的情况
            t -= out[i]->val;
            if (t == sum) ++res;
        }
        helper(node->left, sum, curSum, out, res); //先序遍历二叉树
        helper(node->right, sum, curSum, out, res);
        out.pop_back();
    }
};

我们还可以对上面的方法进行一些优化,来去掉一些不必要的计算,我们可以用哈希表来建立所有的前缀路径之和跟其个数之间的映射,然后看子路径之和有没有等于给定值的,参见代码如下:

class Solution {
public:
    int pathSum(TreeNode* root, int sum) {
        unordered_map<int, int> m;
        m[0] = 1;      // curSum - sum = 0时, res = res + m[0] = res + 1;
        return helper(root, sum, 0, m);
    }
    int helper(TreeNode* node, int sum, int curSum, unordered_map<int, int>& m) {
        if (!node) return 0;
        curSum += node->val;
        int res = m[curSum - sum];   //查找 中间段 相加之和满足要求的情况
        ++m[curSum];
        res += helper(node->left, sum, curSum, m) + helper(node->right, sum, curSum, m);
        --m[curSum];       //还原状态
        return res;
    }
};

下面这种方法非常的简洁,也是利用了前序遍历,对于每个遍历到的节点进行处理,维护一个变量pre来记录之前路径之和,然后cur为pre加上当前节点值,如果cur等于sum,那么返回结果时要加1,然后对当前节点的左右子节点调用递归函数求解,参见代码如下:

class Solution {
public:
    int pathSum(TreeNode* root, int sum) {
        if (!root) return 0;
        return sumUp(root, 0, sum) + pathSum(root->left, sum) + pathSum(root->right, sum);
    }
    int sumUp(TreeNode* node, int pre, int& sum) {
        if (!node) return 0;
        int cur = pre + node->val;
        return (cur == sum) + sumUp(node->left, cur, sum) + sumUp(node->right, cur, sum);
    }
};

笔记:花式使用递归,结合先序遍历,求解二叉树路径和问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值