R - Joseph经典约瑟夫环问题

本文探讨了一个基于经典约瑟夫问题的变形版本,目标是在所有坏人都被清除之前确保没有一个好人受到伤害。通过预先计算并建立数据表的方式,有效地解决了问题,并提供了一段简洁的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

R - Joseph

 
题目如下:
The Joseph's problem is notoriously known. For those who are not familiar with the original problem: from among n people, numbered 1, 2, . . ., n, standing in circle every mth is going to be executed and only the life of the last remaining person will be saved. Joseph was smart enough to choose the position of the last remaining person, thus saving his life to give us the message about the incident. For example when n = 6 and m = 5 then the people will be executed in the order 5, 4, 6, 2, 3 and 1 will be saved. 

Suppose that there are k good guys and k bad guys. In the circle the first k are good guys and the last k bad guys. You have to determine such minimal m that all the bad guys will be executed before the first good guy. 

Input
The input file consists of separate lines containing k. The last line in the input file contains 0. You can suppose that 0 < k < 14.
Output
The output file will consist of separate lines containing m corresponding to k in the input file.
Sample Input
3
4
0
Sample Output
5
30
大意是写一个程序,在好人一个都不死的情况下,循环杀死后面的坏人。
首先如果每次都循环求解,会TL,所以需要先写一个打表程序,输入数据<=14,所以可以先写程序判定每个n的答案,然后再建表写真正的答案程序。
代码如下:
#include <iostream>
using namespace std;
int main()
{
        int num[14] = { 0,2,7,5,30,169,441,1872,7632,1740,93313,459901,1358657,2504881 };
        int k;
        while (cin>>k && k) {
               cout << num[k] << endl;
        }
        return 0;
}
/*int main()//打表算法
{
        int a[30],b[30],n,m;
        while (cin >> n&&n)
        {
               memset(a, 0, sizeof(a));
               memset(b, 0, sizeof(b));
               for (int i = 1; i <= 2 * n; i++)
                       a[i]= i;
               m = n+1;
               for (m;; m++)
               {
                       int t = 2*n,count=0,temp=0,flag=0,goodguy=0;
                       for (int i = 1; i <= 2 * n; i++)
                              b[i] = a[i];
                       while(!goodguy)
                       {
                              int sum0 = 0;
                              while (sum0 != m)
                              {
                                      temp++;
                                      if (temp > t)temp %= t;
                                      if (b[temp])sum0++;
                              }
                              if (temp <= n)
                              {
                                      goodguy++; break;
                              }
                              if (temp > n)
                              {
                                      count++; b[temp] = 0;
                              }
                              if (count == n) {
                                      flag = 1; break;
                              }
                       }
                       if (flag) {
                              cout << m; break;
                       }
               }
        }
        return 0;
}*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值