Towards Efficient and Scale-Robust

论文名字:Towards Efficient and Scale-Robust Ultra-High-Definition Image Demoir´eing
论文下载地址:https://arxiv.org/abs/2207.09935
论文代码地址: https://xinyu-andy.github.io/uhdm-page

论文内容:获取多语义信息并交互融合以处理超高清图像去摩尔纹。

具体内容:随着拍照设备的进步,超高清图像的获取更加容易,也对超高清图像的去摩尔纹技术提出了新的要求:处理负担小、处理分辨率高。

现有方法都是从低分辨率图像上训练和测试,在4K图像上难以去除摩尔纹,但他们也能承受对应的计算成本(即方法的计算成本可负担但效果欠佳),作者认为这些方法欠缺多尺度特征的有效提取策略(可能还有融合策略)。

**笔者观点:**去摩尔纹有种常用的方法是将输入下采样(通常是两次)放到对应的三个分支中,分辨率大小的改变意味着语义信息的不同,最直观的感受是同样10×10大小的感受野,缩略图看到的是一个结构而高清图看到的只是细节,此外同一分支中随着卷积的增加,语义信息也在发生改变。而分支之间的交互也即语义之间的交互都放在输出阶段,缺少有效交互和融合。因此作者想从这一点下手解决问题。

提出的方法一共分三点:DRDB模块、SAM模块、损失函数。整体结构框架如下(图画的真不赖):

请添加图片描述

DRDB(Dilated Residual Dense Block)

老面孔了,就是简单的密集块加空洞卷积,最后使用残差链接,感兴趣的可以查看这篇内容:残差密集块

Table of Contents Introduction Model Summary Model Downloads Evaluation Results Chat Website & API Platform How to Run Locally License Citation Contact 1. Introduction We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. 2. Model Summary Architecture: Innovative Load Balancing Strategy and Training Objective On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing. We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance. It can also be used for speculative decoding for inference acceleration. Pre-Training: Towards Ultimate Training Efficiency We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model. Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap. This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead. At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours. Post-Training: Knowledge Distillation from DeepSeek-R1 We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3. 3. Model Downloads Model #Total Params #Activated Params Context Length Download DeepSeek-V3-Base 671B 37B 128K 🤗 Hugging Face DeepSeek-V3 671B 37B 128K 🤗 Hugging Face Note The total size of DeepSeek-V3 models on Hugging Face is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights. To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: How_to Run_Locally. For developers looking to dive deeper, we recommend exploring README_WEIGHTS.md for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback. 4. Evaluation Results Base Model Standard Benchmarks Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 72B LLaMA3.1 405B DeepSeek-V3 Architecture - MoE Dense Dense MoE # Activated Params - 21B 72B 405B 37B # Total Params - 236B 72B 405B 671B English Pile-test (BPB) - 0.606 0.638 0.542 0.548 BBH (EM) 3-shot 78.8 79.8 82.9 87.5 MMLU (Acc.) 5-shot 78.4 85.0 84.4 87.1 MMLU-Redux (Acc.) 5-shot 75.6 83.2 81.3 86.2 MMLU-Pro (Acc.) 5-shot 51.4 58.3 52.8 64.4 DROP (F1) 3-shot 80.4 80.6 86.0 89.0 ARC-Easy (Acc.) 25-shot 97.6 98.4 98.4 98.9 ARC-Challenge (Acc.) 25-shot 92.2 94.5 95.3 95.3 HellaSwag (Acc.) 10-shot 87.1 84.8 89.2 88.9 PIQA (Acc.) 0-shot 83.9 82.6 85.9 84.7 WinoGrande (Acc.) 5-shot 86.3 82.3 85.2 84.9 RACE-Middle (Acc.) 5-shot 73.1 68.1 74.2 67.1 RACE-High (Acc.) 5-shot 52.6 50.3 56.8 51.3 TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9 NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0 AGIEval (Acc.) 0-shot 57.5 75.8 60.6 79.6 Code HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2 MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4 LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4 CRUXEval-I (Acc.) 2-shot 52.5 59.1 58.5 67.3 CRUXEval-O (Acc.) 2-shot 49.8 59.9 59.9 69.8 Math GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3 MATH (EM) 4-shot 43.4 54.4 49.0 61.6 MGSM (EM) 8-shot 63.6 76.2 69.9 79.8 CMath (EM) 3-shot 78.7 84.5 77.3 90.7 Chinese CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7 C-Eval (Acc.) 5-shot 81.4 89.2 72.5 90.1 CMMLU (Acc.) 5-shot 84.0 89.5 73.7 88.8 CMRC (EM) 1-shot 77.4 75.8 76.0 76.3 C3 (Acc.) 0-shot 77.4 76.7 79.7 78.6 CCPM (Acc.) 0-shot 93.0 88.5 78.6 92.0 Multilingual MMMLU-non-English (Acc.) 5-shot 64.0 74.8 73.8 79.4 Note Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks. For more evaluation details, please check our paper. Context Window Evaluation results on the Needle In A Haystack (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to 128K. Chat Model Standard Benchmarks (Models larger than 67B) Benchmark (Metric) DeepSeek V2-0506 DeepSeek V2.5-0905 Qwen2.5 72B-Inst. Llama3.1 405B-Inst. Claude-3.5-Sonnet-1022 GPT-4o 0513 DeepSeek V3 Architecture MoE MoE Dense Dense - - MoE # Activated Params 21B 21B 72B 405B - - 37B # Total Params 236B 236B 72B 405B - - 671B English MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5 MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1 MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9 DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6 IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1 GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1 SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9 FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3 LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7 Code HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6 LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5 LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6 Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6 SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0 Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7 Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6 Math AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2 MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2 CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2 Chinese CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9 C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5 C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8 Note All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models. Open Ended Generation Evaluation Model Arena-Hard AlpacaEval 2.0 DeepSeek-V2.5-0905 76.2 50.5 Qwen2.5-72B-Instruct 81.2 49.1 LLaMA-3.1 405B 69.3 40.5 GPT-4o-0513 80.4 51.1 Claude-Sonnet-3.5-1022 85.2 52.0 DeepSeek-V3 85.5 70.0 Note English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric. 5. Chat Website & API Platform You can chat with DeepSeek-V3 on DeepSeek's official website: chat.deepseek.com We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com 6. How to Run Locally DeepSeek-V3 can be deployed locally using the following hardware and open-source community software: DeepSeek-Infer Demo: We provide a simple and lightweight demo for FP8 and BF16 inference. SGLang: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes, with Multi-Token Prediction coming soon. LMDeploy: Enables efficient FP8 and BF16 inference for local and cloud deployment. TensorRT-LLM: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon. vLLM: Support DeepSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism. LightLLM: Supports efficient single-node or multi-node deployment for FP8 and BF16. AMD GPU: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes. Huawei Ascend NPU: Supports running DeepSeek-V3 on Huawei Ascend devices in both INT8 and BF16. Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation. Here is an example of converting FP8 weights to BF16: cd inference python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights Note Hugging Face's Transformers has not been directly supported yet. 6.1 Inference with DeepSeek-Infer Demo (example only) System Requirements Note Linux with Python 3.10 only. Mac and Windows are not supported. Dependencies: torch==2.4.1 triton==3.0.0 transformers==4.46.3 safetensors==0.4.5 Model Weights & Demo Code Preparation First, clone our DeepSeek-V3 GitHub repository: git clone https://github.com/deepseek-ai/DeepSeek-V3.git Navigate to the inference folder and install dependencies listed in requirements.txt. Easiest way is to use a package manager like conda or uv to create a new virtual environment and install the dependencies. cd DeepSeek-V3/inference pip install -r requirements.txt Download the model weights from Hugging Face, and put them into /path/to/DeepSeek-V3 folder. Model Weights Conversion Convert Hugging Face model weights to a specific format: python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16 Run Then you can chat with DeepSeek-V3: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200 Or batch inference on a given file: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE 6.2 Inference with SGLang (recommended) SGLang currently supports MLA optimizations, DP Attention, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks. Notably, SGLang v0.4.1 fully supports running DeepSeek-V3 on both NVIDIA and AMD GPUs, making it a highly versatile and robust solution. SGLang also supports multi-node tensor parallelism, enabling you to run this model on multiple network-connected machines. Multi-Token Prediction (MTP) is in development, and progress can be tracked in the optimization plan. Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3 6.3 Inference with LMDeploy (recommended) LMDeploy, a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows. For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: InternLM/lmdeploy#2960 6.4 Inference with TRT-LLM (recommended) TensorRT-LLM now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3. 6.5 Inference with vLLM (recommended) vLLM v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers pipeline parallelism allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the vLLM instructions. Please feel free to follow the enhancement plan as well. 6.6 Inference with LightLLM (recommended) LightLLM v1.0.1 supports single-machine and multi-machine tensor parallel deployment for DeepSeek-R1 (FP8/BF16) and provides mixed-precision deployment, with more quantization modes continuously integrated. For more details, please refer to LightLLM instructions. Additionally, LightLLM offers PD-disaggregation deployment for DeepSeek-V2, and the implementation of PD-disaggregation for DeepSeek-V3 is in development. 6.7 Recommended Inference Functionality with AMD GPUs In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the SGLang instructions. 6.8 Recommended Inference Functionality with Huawei Ascend NPUs The MindIE framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the instructions here. 7. License This code repository is licensed under the MIT License. The use of DeepSeek-V3 Base/Chat models is subject to the Model License. DeepSeek-V3 series (including Base and Chat) supports commercial use. 8. Citation @misc{deepseekai2024deepseekv3technicalreport, title={DeepSeek-V3 Technical Report}, author={DeepSeek-AI}, year={2024}, eprint={2412.19437}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.19437}, } 9. Contact If you have any questions, please raise an issue or contact us at service@deepseek.com.
最新发布
07-12
### 本地部署 DeepSeek 模型并接入 PyCharm 实现 AI 编程的完整指南 #### 1. 安装 PyCharm PyCharm 是一款广泛使用的 Python 开发工具,支持专业版(Professional)和社区版(Community)。用户可以从 [PyCharm 官网](https://www.jetbrains.com/pycharm/) 下载安装包,并根据操作系统选择合适的版本进行安装。安装完成后,启动 PyCharm 并创建一个 Python 项目。 #### 2. 安装 Ollama Ollama 是一个用于在本地运行大语言模型的工具。访问 [Ollama 官网](https://ollama.com/download) 下载适用于 Windows 或 Linux 的安装包。对于 Linux 用户,可以使用以下命令下载并解压: ```bash curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz ``` 如果网络不稳定,可以直接从浏览器下载安装包并上传至服务器后解压。解压完成后,通过 `ollama serve` 启动服务,并使用 `ollama -v` 验证是否成功运行[^1]。 为了确保每次系统重启后 Ollama 自动启动,可以将其配置为 systemd 服务。创建用户和组后,在 `/etc/systemd/system/ollama.service` 中添加以下内容: ```ini [Unit] Description=Ollama Service After=network-online.target [Service] ExecStart=/usr/bin/ollama serve User=ollama Group=ollama Restart=always RestartSec=3 Environment="PATH=$PATH" [Install] WantedBy=default.target ``` 保存后重新加载 systemd 配置并启用服务: ```bash sudo systemctl daemon-reload sudo systemctl start ollama.service sudo systemctl enable ollama.service ``` #### 3. 下载 DeepSeek 模型 通过 Ollama 命令行下载 DeepSeek 模型,例如 `deepseek-r1:1.5b` 或 `deepseek-r1:7b`: ```bash ollama run deepseek-r1:1.5b ollama run deepseek-r1:7b ``` 模型默认存储路径如下: - macOS: `~/.ollama/models` - Linux: `/usr/share/ollama/.ollama/models` - Windows: `C:\Users\%username%\.ollama\models` 下载完成后,可以在命令行中验证模型是否正常运行。 #### 4. 在 PyCharm 中集成 DeepSeek 模型 ##### 4.1 安装 Proxy AI 插件 打开 PyCharm,进入 **Settings → Plugins**,搜索 "Proxy AI" 并安装插件(注意选择下载量超过 1 万的官方插件)[^2]。安装完成后,重启 PyCharm。 ##### 4.2 配置 Ollama 服务 进入 **Settings → Tools → CodeGPT → Providers**,添加一个新的 Provider,选择 Ollama(Local),填写以下信息: - **API Endpoint**: `http://localhost:11434/api/generate` - **Model**: `deepseek-r1:7b` (与本地部署的模型版本一致) - **API Key**: 留空(因为是本地服务) 点击 **Test Connection** 验证连接是否成功。 ##### 4.3 设置提示词模板 在 **Prompts** 板块中,可以编辑提示词模板以适配 DeepSeek 模型。例如: ```text You are an AI programming assistant, based on the DeepSeek model. Please provide suggestions for code completion and optimization. ``` ##### 4.4 配置模型参数 进入 **Configuration** 板块,设置模型参数: - **Model**: `deepseek-coder` - **Temperature**: `0.7` (控制生成文本的随机性) - **Max Tokens**: `2048` (单次响应的最大长度) #### 5. 使用 DeepSeek 进行 AI 编程 完成上述配置后,可以在 PyCharm 中编写代码时使用 DeepSeek 提供的智能建议。尝试输入部分代码,查看插件是否能提供合适的补全或优化建议。DeepSeek 模型的响应时间通常在 1~2 秒之间,适合快速交互式编程[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值