Linear Algebra Review

本文介绍了线性代数的基本概念,包括矩阵和向量的定义、运算规则及其性质。详细解释了矩阵乘法的过程,并探讨了单位矩阵、逆矩阵及转置矩阵的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Linear Algebra Review

Matrices and Vectors

Matrix: Rectangular array of numbers

Dimension of matrix: number of rows x number of columns

Refer to matrix of specific dimension: R2×3\R^{2\times3}R2×3

Refer to specific matrix elements of the matrix: AijA_{ij}Aij("i,ji,ji,j entry" in the ithi^{th}ith row, jthj^{th}jth column)

Vector: An n×\times× 1 matrix

4-dimensional vector :R4\R^{4}R4

Refer elements in vector: yiy_iyi=$i^{th} $ element

1-indexed vs 0-indexed

By conventional, use capital letters (such as A,B,C,X ) to refer matrices, and use lower cases (like a,d,c,x,y) to refer to either numbers or just raw numbers or scalars or vectors.

Addition and Scalar

Matrix addition and subtraction

Simply add or subtract each corresponding elements

The dimensions of two matrices to add or subtract must be the same

Scalar multiplication and division

Simply multiply or divide every element by the scalar value

Matrix Vector Multiplication

Details:

To get yiy_iyi, multiply A′sA'sAs ithi^{th}ith row with elements of vector xxx, and add them up.

The result is a vector. The number of columns of the matrix must equal the number of rows of the vector.

An m x n matrix multiplied by an n x 1 vector results in an m x 1 vector.

prediction=DataMatrix ∗* parameters

Matrix Matrix Multiplication

Details:
在这里插入图片描述

The ithi^{th}ith column of the matrix CCC is obtained by multiplying AAA with the ithi^{th}ith column of BBB.(for iii =1,2…o)

efficiently make prediction with lots of hypotheses

  • To multiply two matrices, the number of columns of the first matrix must equal the number of rows of the second matrix.

Matrix Multiplication

Properties

  • not commutative

    Let A,BA,BA,B be matrices, then in general, A×B≠B×AA\times B\not=B\times AA×B=B×A.(reversing the order of the matrices can change the dimension of outcome)

  • enjoy associative property

    A×B×CA\times B\times CA×B×C

    Let D=B×CD=B\times CD=B×C. Compute A×DA\times DA×D

    Let E=A×BE=A\times BE=A×B. Compute E×CE\times CE×C.

    all give the same answer.

Identity Matrix

Denoted I  or  In×nI\;or\;I_{n\times n}IorIn×n

  • Has 1’s on the diagonal (upper left to lower right diagonal) and 0’s elsewhere.

When multiplied by any matrix of the same dimensions, results in the original matrix.
A×I=I×A=A A\times I=I\times A=A A×I=I×A=A
(The I′sI'sIs in the function above have different dimension)

The dimension of III is implicit from the context.

Inverse and Transpose

Matrix Inverse

If AAA is an m x m matrix (square matrix), and if it has an inverse,
AA−1=A−1A=I AA^{-1}=A^{-1}A=I AA1=A1A=I
Matrices that don’t have an inverse is singular or degenerate.

Matrix Transpose

Let AAA be an m x n matrix, and let B=ATB=A^TB=AT. Then BBB is an n x m matrix, and
Bij=Aij B_{ij}=A_{ij} Bij=Aij

Transpose**

Let AAA be an m x n matrix, and let B=ATB=A^TB=AT. Then BBB is an n x m matrix, and
Bij=Aij B_{ij}=A_{ij} Bij=Aij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值