题目链接---LightOJ-1138
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input | Output for Sample Input |
3 1 2 5 | Case 1: 5 Case 2: 10 Case 3: impossible |
题意:本题主要讲给出一个数n的阶乘的末尾连续0的个数,输出最小n;
题解:典型的二分思想,难点就是求该数阶乘末尾的0的个数,可以用下面的代码求的,读者可以自行体会一下;
long long sum(long long n)
{
long long res=0;
while(n)
{
res=res+n/5;
n=n/5;
}
return res;
}
下面是该题代码的实现:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
long long sum(long long n)//求n的阶乘末尾连续0的个数
{
long long res=0;
while(n)
{
res=res+n/5;
n=n/5;
}
return res;
}
int main()
{
int t;
cin>>t;
int k=1;
while(t--)
{
long long n,ans=0,head,tail,mid;
cin>>n;
head=1;
tail=INF;
while(tail>=head)
{
mid=(head+tail)/2;
if(sum(mid)==n)
{
ans=mid;
tail=mid-1;
}
else if(sum(mid)>n)
{
tail=mid-1;
}
else
{
head=mid+1;
}
}
printf("Case %d: ",k++);
if(ans)
cout<<ans<<endl;
else
cout<<"impossible"<<endl;
}
return 0;
}