problem
64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
approach 1DP
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1, 999));
dp[0][1] = 0;
for(int i=1; i<=m; i++){
for(int j=1; j<=n; j++){
dp[i][j] = grid[i-1][j-1] + min(dp[i-1][j], dp[i][j-1]);
}
}
return dp[m][n];
}
};
approach 2 DP less space
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<int> dp(n, 0);
for(int i=0; i<m; i++){
for(int j=0; j<n; j++){
if(j==0){
dp[j] += grid[i][j];
}else{
if(dp[j]==0) dp[j] = dp[j-1] + grid[i][j];
else dp[j] = grid[i][j] + min(dp[j-1], dp[j]);
}
}
}
return dp[n-1];
}
};
本文探讨了如何使用动态规划(DP)解决最小路径和问题,包括常规DP方法和空间优化版本。通过实例分析,展示了两种方法在求解64x64网格中从左上角到右下角的最短路径总和时的应用。第一种方法使用二维数组,而第二种方法仅用一维数组,以减少空间复杂度。
586

被折叠的 条评论
为什么被折叠?



