Find a multiple
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8716 Accepted: 3765 Special Judge
Description
The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers are not necessarily different (so it may happen that two or more of them will be equal). Your task is to choose a few of given numbers ( 1 <= few <= N ) so that the sum of chosen numbers is multiple for N (i.e. N * k = (sum of chosen numbers) for some natural number k).
Input
The first line of the input contains the single number N. Each of next N lines contains one number from the given set.
Output
In case your program decides that the target set of numbers can not be found it should print to the output the single number 0. Otherwise it should print the number of the chosen numbers in the first line followed by the chosen numbers themselves (on a separate line each) in arbitrary order.
If there are more than one set of numbers with required properties you should print to the output only one (preferably your favorite) of them.
Sample Input
5
1
2
3
4
1
Sample Output
2
2
3
题解
要找出整除nn的数,一共有个数,我们计算他们的前缀和,
一共有nn个前缀和,这个数modnmodn的余数,一共有nn种情况:
如果余数为,我们直接从1开始输出到这个数就可以了
如果余数不为00,则必有两个数的余数相同(鸽笼原理),我们减一下就得到了结果
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
const int MAXN=1e4+10;
using namespace std;
int a[MAXN],MOD[MAXN],sum,n;
bool ok;
void print(int l,int r)
{
printf("%d\n",r-l+1);
for(int i=l;i<=r;i++)
printf("%d\n",a[i]);
return ;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
{
sum+=a[i];
if(sum%n==0&&(!ok))
{
print(1,i);
ok=1;
}
if(MOD[sum%n]!=0&&(!ok))
{
print(MOD[sum%n]+1,i);
ok=1;
}
if(MOD[sum%n]==0)
MOD[sum%n]=i;
}
return 0;
}