Polynomial Showdown(zoj 1720)

本文介绍了一种算法,用于将给定系数的八次多项式格式化为易于阅读的形式,并去除不必要的字符。遵循特定的格式规则,如按降序排列项、正确显示符号等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given the coefficients of a polynomial from degree 8 down to 0, you are to format the polynomial in a readable format with unnecessary characters removed. For instance, given the coefficients 0, 0, 0, 1, 22, -333, 0, 1, and -1, you should generate an output line which displays x^5 + 22x^4 - 333x^3 + x - 1.

The formatting rules which must be adhered to are as follows:

1. Terms must appear in decreasing order of degree.

2. Exponents should appear after a caret `"^".

3. The constant term appears as only the constant.

4. Only terms with nonzero coefficients should appear, unless all terms have zero coefficients in which case the constant term should appear.

5. The only spaces should be a single space on either side of the binary + and - operators.

6. If the leading term is positive then no sign should precede it; a negative leading term should be preceded by a minus sign, as in -7x^2 + 30x + 66.

7. Negated terms should appear as a subtracted unnegated term (with the exception of a negative leading term which should appear as described above). That is, rather than x^2 + -3x, the output should be x^2 - 3x.

8. The constants 1 and -1 should appear only as the constant term. That is, rather than -1x^3 + 1x^2 + 3x^1 - 1, the output should appear as-x^3 + x^2 + 3x - 1.


Input

The input file will contain one or more lines of coefficients delimited by one or more spaces. There are nine coefficients per line, each coefficient being an integer with a magnitude of less than 1000.


Output

The output file should contain the formatted polynomials, one per line.


Sample Input

0 0 0 1 22 -333 0 1 -1
0 0 0 0 0 0 -55 5 0


Sample Output

x^5 + 22x^4 - 333x^3 + x - 1
-55x^2 + 5x


这里主要就是情况的分类,好多个if,else  @_@

#include<iostream>
using namespace std;
inline int fabs(int a)
{
	return a>0?a:-a;
}
int main(void)
{
	int a[9];
	int i;
	while(cin>>a[0])
	{
		bool first=true;   //首位标记 
		for(i=1;i<=8;i++)
		cin>>a[i];
    	for(i=0;i<=8;i++)
    	{
		  if(a[i])   //非零系数进行处理 
     	 {
 	      if(first)
          { 
			if(a[i]==-1&&i!=8)
			cout<<'-';
			else if(a[i]!=1||i==8)
			cout<<a[i];
			if(i==7)
			cout<<'x';
			else if(i<7)
			cout<<"x^"<<8-i;
			first=false; 
		} 
		else
		{
			if(a[i]>0)
			cout<<' '<<'+'<<' ';
			else
			cout<<' '<<'-'<<' ';
			if(a[i]!=1&&a[i]!=-1||i==8)
			cout<<fabs(a[i]);
			if(i==7)
			cout<<'x';
			else if(i<7)
			cout<<"x^"<<8-i; 
		}
	 }
	}
		if(first==true)
	    cout<<'0';
	    cout<<endl;
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值