4、volatile

本文深入探讨了Java中的volatile关键字,介绍了其简介、实现原理,包括如何确保内存可见性和happens-before关系。详细解析了volatile的内存语义,如StoreStore、StoreLoad、LoadLoad和LoadStore屏障的作用,并通过示例展示了volatile的实际使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. volatile简介

自我总结:
synchronized: 具有原子性,有序性和可见性   volatile:具有有序性和可见性
在for()循环或者while()内容中对voilate赋值不生效。
for (Node<E> h = head, p = h, q;;) {
}
for (Integer integer : list) {
}
即使head和list是volatile修饰的,但是也只会读取一次,下次循环的时候不会重新读取,即使其他线程对head进行修改。
 
volatile的修饰的仅仅只是数组引用,数组中的元素的修改是不能保证可见性的。
 
 
volatile
在上一篇文章中我们深入理解了java关键字 synchronized ,我们知道在java中还有一大神器就是关键volatile,可以说是和synchronized各领风骚,其中奥妙,我们来共同探讨下。
通过上一篇的文章我们了解到synchronized是阻塞式同步,在线程竞争激烈的情况下会升级为重量级锁。而volatile就可以说是java虚拟机提供的最轻量级的同步机制。但它同时不容易被正确理解,也至于在并发编程中很多程序员遇到线程安全的问题就会使用synchronized。 Java内存模型 告诉我们,各个线程会将共享变量从主内存中拷贝到工作内存,然后执行引擎会基于工作内存中的数据进行操作处理。线程在工作内存进行操作后何时会写到主内存中?这个时机对普通变量是没有规定的,而针对volatile修饰的变量给java虚拟机特殊的约定,线程对volatile变量的修改会立刻被其他线程所感知,即不会出现数据脏读的现象,从而保证数据的“可见性”。
   volatile作用: 共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。 2)禁止进行指令重排序
现在我们有了一个大概的印象就是: 被volatile修饰的变量能够保证每个线程能够获取该变量的最新值,从而避免出现数据脏读的现象。
volatile使用场景:
 
synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:
  1)对变量的写操作不依赖于当前值
  2)该变量没有包含在具有其他变量的不变式中

2. volatile实现原理

volatile是怎样实现了?比如一个很简单的Java代码:
instance = new Instancce() //instance是volatile变量
在生成汇编代码时会在volatile修饰的共享变量进行写操作的时候会多出 Lock前缀的指令 (具体的大家可以使用一些工具去看一下,这里我就只把结果说出来)。我们想这个 Lock 指令肯定有神奇的地方,那么Lock前缀的指令在多核处理器下会发现什么事情了?主要有这两个方面的影响:
  1. 将当前处理器缓存行的数据写回系统内存;
  2. 这个写回内存的操作会使得其他CPU里缓存了该内存地址的数据无效
为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完不知道何时会写到内存。如果对声明了volatile的变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是,就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。所以,在多处理器下,为了保证各个处理器的缓存是一致的,就会实现 缓存一致性 协议, 每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期 ,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。因此,经过分析我们可以得出如下结论:
  1. Lock前缀的指令会引起处理器缓存写回内存;
  2. 一个处理器的缓存回写到内存会导致其他处理器的缓存失效;
  3. 当处理器发现本地缓存失效后,就会从内存中重读该变量数据,即可以获取当前最新值。 (但是已经读取到工作内存的值不能进行改动)
这样针对volatile变量通过这样的机制就使得每个线程都能获得该变量的最新值。

3. volatile的happens-before关系

经过上面的分析,我们已经知道了volatile变量可以通过 缓存一致性协议 保证每个线程都能获得最新值,即满足数据的“可见性”。我们继续延续上一篇分析问题的方式(我一直认为思考问题的方式是属于自己,也才是最重要的,也在不断培养这方面的能力),我一直将并发分析的切入点分为 两个核心,三大性质 。两大核心:JMM内存模型(主内存和工作内存)以及happens-before;三条性质:原子性,可见性,有序性(关于三大性质的总结在以后得文章会和大家共同探讨)。废话不多说,先来看两个核心之一:volatile的happens-before关系。
在六条 happens-before规则 中有一条是:**volatile变量规则:对一个volatile域的写,happens-before于任意后续对这个volatile域的读。**下面我们结合具体的代码,我们利用这条规则推导下:
public class VolatileExample {
private int a = 0;
private volatile boolean flag = false;
public void writer(){
a = 1; //1
flag = true; //2
}
public void reader(){
if(flag){ //3
int i = a; //4
}
}
}
上面的实例代码对应的happens-before关系如下图所示:
 
加锁线程A先执行writer方法,然后线程B执行reader方法图中每一个箭头两个节点就代码一个happens-before关系,黑色的代表根据 程序顺序规则 推导出来,红色的是根据 volatile变量的写happens-before 于任意后续对volatile变量的读 ,而蓝色的就是根据传递性规则推导出来的。这里的2 happen-before 3,同样根据happens-before规则定义:如果A happens-before B,则A的执行结果对B可见,并且A的执行顺序先于B的执行顺序,我们可以知道操作2执行结果对操作3来说是可见的,也就是说当线程A将volatile变量 flag更改为true后线程B就能够迅速感知。

4. volatile的内存语义

还是按照 两个核心 的分析方式,分析完happens-before关系后我们现在就来进一步分析volatile的内存语义(按照这种方式去学 习,会不会让大家对知识能够把握的更深,而不至于不知所措,如果大家认同我的这种方式,不妨给个赞,小弟在此谢过,对我是个鼓励)。还是以上面的代码为例,假设线程A先执行writer方法,线程B随后执行reader方法,初始时线程的本地内存中flag和a都是初始状态,下图是线程A执行volatile写后的状态图。
 
当volatile变量写后,线程中本地内存中共享变量就会置为失效的状态,因此线程B再需要读取从主内存中去读取该变量的最新值。下图就展示了线程B读取同一个volatile变量的内存变化示意图。
 
从横向来看,线程A和线程B之间进行了一次通信,线程A在写volatile变量时,实际上就像是给B发送了一个消息告诉线程B你现在的值都是旧的了,然后线程B读这个volatile变量时就像是接收了线程A刚刚发送的消息。既然是旧的了,那线程B该怎么办了?自然而然就只能去主内存去取啦。
好的,我们现在 两个核心 :happens-before以及内存语义现在已经都了解清楚了。是不是还不过瘾,突然发现原来自己会这么爱学习(微笑脸),那我们下面就再来一点干货----volatile内存语义的实现。

4.1 volatile的内存语义实现

我们都知道,为了性能优化,JMM在不改变正确语义的前提下,会允许编译器和处理器对指令序列进行重排序,那如果想阻止重排序要怎么办了?答案是可以添加内存屏障。
内存屏障
JMM内存屏障分为四类见下图,
 
java编译器会在生成指令系列时在适当的位置会插入内存屏障指令来禁止特定类型的处理器重排序。为了实现volatile的内存语义,JMM会限制特定类型的编译器和处理器重排序,JMM会针对编译器制定volatile重排序规则表:
 
"NO"表示禁止重排序。为了实现volatile内存语义时,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的 处理器重排序 。对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎是不可能的,为此,JMM采取了保守策略:
  1. 在每个volatile写操作的 前面 插入一个StoreStore屏障;
  2. 在每个volatile写操作的 后面 插入一个StoreLoad屏障;
  3. 在每个volatile读操作的 后面 插入一个LoadLoad屏障;
  4. 在每个volatile读操作的 后面 插入一个LoadStore屏障。
需要注意的是:volatile写是在前面和后面 分别插入内存屏障 ,而volatile读操作是在 后面插入两个内存屏障
StoreStore屏障 :禁止上面的普通写和下面的volatile写重排序;
StoreLoad屏障 :防止上面的volatile写与下面可能有的volatile读/写重排序
LoadLoad屏障 :禁止下面所有的普通读操作和上面的volatile读重排序
LoadStore屏障 :禁止下面所有的普通写操作和上面的volatile读重排序
下面以两个示意图进行理解,图片摘自相当好的一本书《java并发编程的艺术》。
 
 

5. 一个示例

我们现在已经理解volatile的精华了,文章开头的那个问题我想现在我们都能给出答案了。更正后的代码为:
public class VolatileDemo {
private static volatile boolean isOver = false;
 
public static void main(String[] args) {
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
while (!isOver) ;
}
});
thread.start();
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
isOver = true;
}
}
注意不同点,现在已经 将isOver设置成了volatile变量 ,这样在main线程中将isOver改为了true后,thread的工作内存该变量值就会失效,从而需要再次从主内存中读取该值,现在能够读出isOver最新值为true从而能够结束在thread里的死循环,从而能够顺利停止掉thread线程。现在问题也解决了,知识也学到了:)。(如果觉得还不错,请点赞,是对我的一个鼓励。)
另外一篇文章:

四.深入剖析volatile关键字

  在前面讲述了很多东西,其实都是为讲述volatile关键字作铺垫,那么接下来我们就进入主题。
1.volatile关键字的两层语义
  一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
  2)禁止进行指令重排序。
  先看一段代码,假如线程1先执行,线程2后执行:
 
 
//线程1
 
boolean stop = false ;
 
while (!stop){
 
doSomething();
 
}
 
 
 
//线程2
 
stop = true ;
   这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。
  下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。
  那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。
  但是用volatile修饰之后就变得不一样了:
  第一:使用volatile关键字会强制将修改的值立即写入主存;
  第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);
  第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。
  那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。
  那么线程1读取到的就是最新的正确的值。
2.volatile保证原子性吗?
  从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?
  下面看一个例子:
 
 
public class Test {
 
public volatile int inc = 0 ;
 
 
 
public void increase () {
 
inc++;
 
}
 
 
 
public static void main (String[] args) {
 
final Test test = new Test();
 
for ( int i= 0 ;i< 10 ;i++){
 
new Thread(){
 
public void run () {
 
for ( int j= 0 ;j< 1000 ;j++)
 
test.increase();
 
};
 
}.start();
 
}
 
 
 
while (Thread.activeCount()> 1 ) //保证前面的线程都执行完
 
Thread.yield();
 
System.out.println(test.inc);
 
}
 
}
   大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。
  可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。
   这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。
  在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:
  假如某个时刻变量inc的值为10,
  线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;
  然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。
  然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。
  那么两个线程分别进行了一次自增操作后,inc只增加了1。
  解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。
  根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。
  在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap),CAS实际上是利用处理器提供的CMPXCHG指令实现的,而处理器执行CMPXCHG指令是一个原子性操作。
3.volatile能保证有序性吗?
  在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。
  volatile关键字禁止指令重排序有两层意思:
  1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;
  2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。
  可能上面说的比较绕,举个简单的例子:
 
 
//x、y为非volatile变量
 
//flag为volatile变量
 
 
 
x = 2 ; //语句1
 
y = 0 ; //语句2
 
flag = true ; //语句3
 
x = 4 ; //语句4
 
y = - 1 ; //语句5
   由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。
  并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的。
  那么我们回到前面举的一个例子:
 
 
//线程1:
 
context = loadContext(); //语句1
 
inited = true ; //语句2
 
 
 
//线程2:
 
while (!inited ){
 
sleep()
 
}
 
doSomethingwithconfig(context);
   前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。
  这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。
4.volatile的原理和实现机制
  前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。
  下面这段话摘自《深入理解Java虚拟机》:
  “观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”
  lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:
  1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
  2)它会强制将对缓存的修改操作立即写入主存;
  3)如果是写操作,它会导致其他CPU中对应的缓存行无效。

五.使用volatile关键字的场景

  synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是要注意volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:
  1)对变量的写操作不依赖于当前值
  2)该变量没有包含在具有其他变量的不变式中
  实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。
  事实上,我的理解就是上面的2个条件需要保证操作是原子性操作,才能保证使用volatile关键字的程序在并发时能够正确执行。
  下面列举几个Java中使用volatile的几个场景。
1.状态标记量
 
 
volatile boolean flag = false ;
 
 
 
while (!flag){
 
doSomething();
 
}
 
 
 
public void setFlag () {
 
flag = true ;
 
}
 
 
 
volatile boolean inited = false ;
 
//线程1:
 
context = loadContext();
 
inited = true ;
 
 
 
//线程2:
 
while (!inited ){
 
sleep()
 
}
 
doSomethingwithconfig(context);
 
2.double check
 
class Singleton {
 
private volatile static Singleton instance = null ;
 
 
 
private Singleton () {
 
 
 
}
 
 
 
public static Singleton getInstance () {
 
if (instance== null ) {
 
synchronized (Singleton.class) {
 
if (instance== null )
 
instance = new Singleton();
 
}
 
}
 
return instance;
 
}
 
}
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值