Painting some colored segments on a line, some previously painted segments may be covered by some the subsequent ones.
Your task is counting the segments of different colors you can see at last.
Input
The first line of each data set contains exactly one integer n, 1 <= n <= 8000, equal to the number of colored segments.
Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces:
x1 x2 c
x1 and x2 indicate the left endpoint and right endpoint of the segment, c indicates the color of the segment.
All the numbers are in the range [0, 8000], and they are all integers.
Input may contain several data set, process to the end of file.
Output
Each line of the output should contain a color index that can be seen from the top, following the count of the segments of this color, they should be printed according to the color index.
If some color can't be seen, you shouldn't print it.
Print a blank line after every dataset.
Sample Input
5
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
4
0 1 1
3 4 1
1 3 2
1 3 1
6
0 1 0
1 2 1
2 3 1
1 2 0
2 3 0
1 2 1
Sample Output
1 1
2 1
3 1
1 1
0 2
1 1
Author: Standlove
Source: ZOJ Monthly, May 2003
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n;
int ans[N], aa[N];
struct xx{
int l, r, v;
} T[N<<2], a[N];
void Pushdown(int k){
if(T[k].v != -1){
T[k<<1].v = T[k<<1|1].v = T[k].v;
T[k].v = -1;
}
}
void Pushup(int k){
if(T[k<<1].v == T[k<<1|1].v){
T[k].v = T[k<<1].v;
}
}
void Build(int l, int r, int k){
T[k].l = l, T[k].r = r, T[k].v = -1;
if(l == r) return;
int mid = (l+r)>>1;
Build(l, mid, k<<1);
Build(mid+1, r, k<<1|1);
}
void Update(int l, int r, int v, int k){
if(l <= T[k].l && r >= T[k].r){
T[k].v = v;
return;
}
Pushdown(k);
int mid = (T[k].l+T[k].r)>>1;
if(l > mid) Update(l, r, v, k<<1|1);
else if(r <= mid) Update(l, r, v, k<<1);
else{
Update(l, mid, v, k<<1);
Update(mid+1, r, v, k<<1|1);
}
Pushup(k);
}
void Query(int k){
if(T[k].v != -1){
for(int i = T[k].l; i <= T[k].r; i++){
aa[i] = T[k].v;
}
return;
}
if(T[k].l == T[k].r) return;
Query(k<<1);
Query(k<<1|1);
}
int main(){
while(scanf("%d", &n) == 1){
memset(aa, -1, sizeof(aa));
memset(ans, 0, sizeof(ans));
int m = 0;
for(int i = 0; i < n; i++){
scanf("%d%d%d", &a[i].l, &a[i].r, &a[i].v);
m = max(m, a[i].r);
}
Build(1, m, 1);
for(int i = 0; i < n; i++){
Update(a[i].l+1, a[i].r, a[i].v, 1);
}
Query(1);
aa[0] = -1;
for(int i = 1; i <= m; i++){
if(aa[i] == -1) continue;
if(aa[i] != aa[i-1]) ans[aa[i]]++;
}
for(int i = 0; i <= 8000; i++){
if(ans[i]) printf("%d %d\n", i, ans[i]);
}
printf("\n");
}
}

本文介绍了一种通过绘制彩色线段并计算最终可见的不同颜色线段数量的算法。输入包括一系列线段及其颜色,输出为每种可见颜色的计数。文章提供了完整的C++实现代码,采用线段树进行高效更新和查询。
1246

被折叠的 条评论
为什么被折叠?



