Speeding AnsiStrings tricks, and some code [zz from delphi3000]

本文介绍了Delphi中AnsiStrings的内部实现,并分享了五种提高字符串操作效率的方法,包括使用常量字符串、减少内存重新分配、利用FastMM内存管理器、避免字符串拼接以及使用绝对变量进行类型转换。

As you have probably seen in many places, Delphi's AnsiStrings (that is, the default string type in Win32 Delphi) are really pointers to a character array that is both reference-counted and #0-terminated. In this article I intend to explore some implications these characteristics bring to how you should code.

 

Note:

 

If you are not familiar with the inner workings of AnsiStrings, read first the small intro I added at the end. Please, I could use some comments telling me where my explanation is not clear enough?

 

While these tricks can be applied everywhere, some of them --marked with "(!)"-- may decrease the legibility of your code and be a potential source of new bugs. So they should be used mainly when developing your library of code snippets and (probably) components --where anything you write will be debugged once and reused a lot--, or when you detect a bottleneck after profiling.

 

Trick #1: Constant strings

 

Many times I've found something like this:

 


  procedure MyProc( Str : string );

 

There are very few cases where it should be written this way. While in old days' ShortStrings a call to MyProc:

 


  MyProc( s );

 

would imply copying the string to a temporary buffer --which was why usage of const was highly recommended--, even today something like this is needed (and implicitly generated by the compiler):

 


  procedure MyProc( Str : string );
    begin
      _LStrAddRef( Str );
      // User code...
      _LStrClr( Str );
    end;

 

This way, if inside MyProc some code tried to modify Str, it would detect that its RefCount is higher than one (that is, the string is shared), and would automatically create a copy (copy-on-write). So, you may think, what's the big deal? First, it's code running without need. Second, since MyProc could throw an exception, in reality the added code will be more like this:

 


  procedure MyProc( Str : string );
    begin
      _LStrAddRef( Str );
      try
        // User code...
      finally
        _LStrClr( Str );
      end;
    end;

 

Which is not be as efficient as you could get by simply adding a const before Str.

 

Trick #2: Reallocations are bad!

 

Every time you create a new object, dynamic array or string, or change the length of one by concatenating or calling SetLength, the memory manager kicks in, doing a lot of stuff behind curtains, which beside just slowing your program, can rapidly lead to memory fragmentation.
With pre-2006 Delphi versions' default memory manager, reallocations could get you into trouble real fast.

 

One easy and important step to speed-up your application and reduce your memory footprint, is to reduce unnecessary memory reallocations.

 

Trick #3: Use FastMM!

 

Even after reducing memory reallocations, a better memory manager will make your life a lot easier. So, if you're still not using FastMM, don't wait any more, go get it! By installing its BorlndMM.dll version, your old Delphi will be noticeably faster. By using it within your apps, they might get faster too (if they allocate lots of memory, be it objects or strings, you should experience a speed-up.) You might even detect some new sneaky bugs in your code, specially with the debug build.

 

Trick #4: Don't concat!

 

You've probably seen something like this before:

 


  function MyFunc( Count : integer ) : string;
    var
      i : integer;
    begin
      Result := ''; // BTW: Not needed, this code is automatically generated
      for i := 1 to Count do
        Result := Result + char( i );
    end;

 

Behind the scenes, it becomes:

 


   for i := 1 to Count do
     _LStrCat( Result, _LStrFromChar( char(i) ) );

 

Now, if you take a look in System.pas, something like this should be happening inside LStrCat:

 


  procedure LStrCat( var Dest; const Source );
     if ( Dest = nil ) or ( lenDest = 0 )
       then Dest := Source
       else
         begin
           SetLength( Dest, lenDest + lenSource );
           Move( Source, Dest+lenDest, lenSource );
         end;

 


That is, the string is allocated Count times, its contents copied Count - 1 from its previous location, and then the new fragment (which, being a char, must first be converted to a string itself) is appended to the end of Dest. If you've been wondering why Delphi strings are so slow, now you know! ;)

 

We can fix it:

 


  function MyFunc( Count : integer ) : string; // v2
    var
      i : integer;
    begin
      SetLength( Result, Count );
      for i := 1 to Count do
        Result[i] := char( i );
    end;

 

And it becomes:

 


    SetLength( s, Count );
    for i := 1 to Count do
      begin
        _InternalUniqueString( s );
        Result[i] := char( i );
      end;

 

Which is still slower than should be, due to the call to UniqueString. For a possible solution when you don't know before-hand the final size of the string, see the unit attached at the end.

 

Trick #5: PChars are faster (!)

 

So, how can we get rid of UniqueString? You might try:

 


  function MyFunc( Count : integer ) : string; // v3
    var
      i : integer;
    begin
      SetLength( Result, Count );
      for i := 0 to Count - 1 do
        pchar(Result)[i] := char( i + 1 ); // pchars go from 0 to Len - 1
    end;

 

This will indeed remove the call to UniqueString (and any checks on whether you're shooting yourself on the foot), but now there is a call to LStrToPchar, which we can still remove from the loop:

 


  function MyFunc( Count : integer ) : string; // v4
    var
      i        : integer;
      szResult : pchar;
    begin
      SetLength( Result, Count );
      szResult := pchar( Result );
      for i := 0 to Count - 1 do
        szResult[i] := char( i + 1 );
    end;

 

Trick #6: Absolute vars are a nice way to typecast (though they don't work in .NET) (!)

 

All LStrToPchar does is to check whether the string is empty, returning a pointer to a #0 in that case, or the same string otherwise (remember AnsiStrings are storage-compatible with PChars.) Since we know Result <> '', we can clean up the code, and delete the szResult variable:

 


  function MyFunc( Count : integer ) : string; // v5
    var
      i        : integer;
      szResult : pchar absolute Result;
    begin
      SetLength( Result, Count );
      for i := 0 to Count - 1 do
        szResult[i] := char( i + 1 );
    end;

 

Note that this works anywhere you would use a typecast, removing the (usually) cumbersome syntax from your code:

 


  procedure myTest( Obj : TObject );
    var
      wEdit  : TEdit  absolute Obj;
      wPanel : TPanel absolute Obj;
    begin
      // Crazy example:
      if Obj is TEdit
        then
          begin
            wEdit.Text     := ...
            wEdit.ReadOnly := ...
          end
        else
      if Obj is TPanel
        then
          begin
            wPanel.BevelInner := ...
            wPanel.BevelOuter := ...
          end
        else ...
    end;

 

Appendix: AnsiStrings Intro

 

Old Pascal strings (ShortString) are  blocks of characters with a structure like this:

 

type

  ShortString[MaxLen] =
     packed record
       strLen   : byte; // Accessed as s[0], didn't use a union to keep things more clear
       strChars : array[1..MaxLen] of char;
     end;

 

So, every string had a fixed size (MaxLen+1), a string could not hold more that 255 characters, and every time you copied a string the whole block was copied from one string to the other.

 

With an AnsiString, the string is really a reference to the block of characters, the string has a reference count (two strings can point to the same block), the length is an integer (so the max length is 2GB), and every string ends in #0 (they can be casted to a pchar).

 

type

  PRealAnsiString = ^TRealAnsiString;
  TRealAnsiString =
     packed record
       strRefCount : integer;
       strLen      : integer;
       strChars    : array[0..strLen - 1] of char;
       strSZ       : char = #0; // The last one is always #0
     end;
  AnsiString = @TRealAnsiString.strChars;

 

Let's take a look to some basic operations:

 


  s1 := 'A String'; // Now s1 points to "A String"#0, strRefCount = 1, strLen = 8
  s2 := s1;         // Now both s1 & s2 point to the same block, strRefCount = 2, strLen = 8, no copy was made
  s2[1] := 'B';     // Now s2 points to a new block holding "B String"#0, strRefCount is 1 in both strings
                    //   The compiler-generated hidden code calls InternalUniqueString, which checks
                    //   if strRefCount > 1, reserving a new block if needed, and copying the old contents
                    //   to the new block. Then the normal code is executed and the first character is modified.


内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值