【LeetCode】118. 杨辉三角

本文介绍了一个算法,用于生成杨辉三角的前numRows行。通过一个示例展示了当输入为5时,如何得到对应的杨辉三角。算法首先检查输入是否小于1,然后初始化列表,并通过迭代填充后续行,每行的数是其左上和右上两数之和。

给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。

在杨辉三角中,每个数是它左上方和右上方的数的和。

示例:

输入: 5
输出:
[
     [1],
    [1,1],
   [1,2,1],
  [1,3,3,1],
 [1,4,6,4,1]
]

 

答案:

class Solution {
    public List<List<Integer>> generate(int numRows) {
        List<List<Integer>> lli=new ArrayList<List<Integer>>();
        if(numRows<1){
            return lli;
        }
        
        List<Integer> li=new ArrayList<Integer>();
        li.add(1);
        lli.add(li);
        
        for(int i=2;i<=numRows;i++){
            List<Integer> tem=new ArrayList<Integer>();
            tem.add(1);
            List<Integer> pre=lli.get(i-2);
            for(int j=1;j<i-1;j++){
                tem.add(pre.get(j)+pre.get(j-1));
            }
            tem.add(1);
            lli.add(tem);
        }
        return lli;
    }
}

 

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值