FuSAGNet Running Analysis

1. Original Train Dataset

1.1 Shape of original train dataset

[ 0.935538 0.433560 1.0 1.0 … 0.000037 0.0 0.0 0.0 0.894236 0.434363 1.0 1.0 … 0.000037 0.0 0.0 0.0 0.952981 0.433002 1.0 1.0 … 0.000037 0.0 0.0 0.0 0.912204 0.434542 1.0 1.0 … 0.000037 0.0 0.0 0.0 0.922004 0.433872 1.0 1.0 … 0.000037 0.0 0.0 0.0 ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ 0.958814 0.457039 1.0 1.0 … 0.000073 0.0 0.0 0.0 0.919379 0.457976 1.0 1.0 … 0.000073 0.0 0.0 0.0 0.911795 0.456012 1.0 1.0 … 0.000073 0.0 0.0 0.0 0.954614 0.455633 1.0 1.0 … 0.000073 0.0 0.0 0.0 0.898320 0.457418 1.0 1.0 … 0.000073 0.0 0.0 0.0 ] \begin{bmatrix} 0.935538 & 0.433560 & 1.0 & 1.0 & \ldots & 0.000037 & 0.0 & 0.0 & 0.0 \\ 0.894236 & 0.434363 & 1.0 & 1.0 & \ldots & 0.000037 & 0.0 & 0.0 & 0.0 \\ 0.952981 & 0.433002 & 1.0 & 1.0 & \ldots & 0.000037 & 0.0 & 0.0 & 0.0 \\ 0.912204 & 0.434542 & 1.0 & 1.0 & \ldots & 0.000037 & 0.0 & 0.0 & 0.0 \\ 0.922004 & 0.433872 & 1.0 & 1.0 & \ldots & 0.000037 & 0.0 & 0.0 & 0.0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0.958814 & 0.457039 & 1.0 & 1.0 & \ldots & 0.000073 & 0.0 & 0.0 & 0.0 \\ 0.919379 & 0.457976 & 1.0 & 1.0 & \ldots & 0.000073 & 0.0 & 0.0 & 0.0 \\ 0.911795 & 0.456012 & 1.0 & 1.0 & \ldots & 0.000073 & 0.0 & 0.0 & 0.0 \\ 0.954614 & 0.455633 & 1.0 & 1.0 & \ldots & 0.000073 & 0.0 & 0.0 & 0.0 \\ 0.898320 & 0.457418 & 1.0 & 1.0 & \ldots & 0.000073 & 0.0 & 0.0 & 0.0 \\ \end{bmatrix} 0.9355380.8942360.9529810.9122040.9220040.9588140.9193790.9117950.9546140.8983200.4335600.4343630.4330020.4345420.4338720.4570390.4579760.4560120.4556330.4574181.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.00.0000370.0000370.0000370.0000370.0000370.0000730.0000730.0000730.0000730.0000730.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0

  • The shape is [47520, 51]

2. TimeDataset

  • The final return
class TimeDataset(Dataset):
	pass
	def __getitem__(self, idx):
		pass
		return window, window_y, label, edge_index
  • window: [51, 5]
  • window_y: [51]
  • label: [51]
  • edge_index: [2, 2550]

2.1 Shape of train TimeDataset

  • This is train_dataset which used to generate train_dataloader
  • In train_dataloader author use random to split train subset and valid subset
  • Therefore, we will get different train and valid dataset in every signal training

[ [ [ 9.5726 e − 01 4.5503 e − 02 ⋮ 5.8423 e − 01 ] t [ 9.1500 e − 01 4.7642 e − 02 ⋮ 2.0000 e − 01 ] t + 1 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 2 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 3 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 4 ] t r a i n [ 9.6824 e − 01 4.7642 e − 02 ⋮ 0.0000 e + 00 ] t a r g e t t + 5 [ [ 9.5726 e − 01 4.5503 e − 02 ⋮ 5.8423 e − 01 ] t + 1 [ 9.1500 e − 01 4.7642 e − 02 ⋮ 2.0000 e − 01 ] t + 2 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 3 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 4 [ 9.7511 e − 01 4.4018 e − 02 ⋮ 6.0243 e − 01 ] t + 5 ] t r a i n [ 9.6824 e − 01 4.7642 e − 02 ⋮ 0.0000 e + 00 ] t a r g e t t + 6 ⋮ ⋮ ] \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} 9.5726e-01 \\ 4.5503e-02 \\ \vdots \\ 5.8423e-01 \\ \end{bmatrix}^{t} & \begin{bmatrix} 9.1500e-01 \\ 4.7642e-02 \\ \vdots \\ 2.0000e-01 \\ \end{bmatrix}^{t+1} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+2} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+3} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+4} \end{bmatrix} _{train} & \begin{bmatrix} 9.6824e-01 \\ 4.7642e-02 \\ \vdots \\ 0.0000e+00 \\ \end{bmatrix}^{t+5} _{target} \\ \begin{bmatrix} \begin{bmatrix} 9.5726e-01 \\ 4.5503e-02 \\ \vdots \\ 5.8423e-01 \\ \end{bmatrix}^{t+1} & \begin{bmatrix} 9.1500e-01 \\ 4.7642e-02 \\ \vdots \\ 2.0000e-01 \\ \end{bmatrix}^{t+2} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+3} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+4} & \begin{bmatrix} 9.7511e-01 \\ 4.4018e-02 \\ \vdots \\ 6.0243e-01 \\ \end{bmatrix}^{t+5} \end{bmatrix} _{train} & \begin{bmatrix} 9.6824e-01 \\ 4.7642e-02 \\ \vdots \\ 0.0000e+00 \\ \end{bmatrix}^{t+6} _{target} \\ \vdots & \vdots \end{bmatrix} 9.5726e014.5503e025.8423e01 t 9.1500e014.7642e022.0000e01 t+1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

==Microsoft==

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值