FuSAGNet Evaluation Analysis

本文详细描述了FuSAGNet模型的评估过程,包括测试分数预测、重构、加权调和平均(WHM)计算以及F1、Precision和Recall的求解方法。重点在于通过设置阈值和权重调整来优化性能指标。

1. Procedure

1.1 Calculating test_score_forecasting

Function Name:

  • get_full_err_scores()
Params Description
test_result Predicted y_hat by best_model on test dataset
val_result Predicted y_hat by best_model on valid dataset

Purpose:

Getting smoothed_score for every feature, respectively on test_result and val_result

  • get_err_scores
Params Description
err_scores (test_delta - n_err_mid) / (np.abs(n_err_iqr) + epsilon)
test_delta set before testing default is 0.5
n_err_mid median from np.substruct(pred_data, ground_truth)
n_err_iqr quartile about np.substruct(pred_data, ground_truth)
err_scores a raw in smoothed_scores

Return:

  • all_socres(calculating from get_full_err_score and concat together) and all_norms

1.2 Calculating test_score_reconstruction

Function Name: get_full_err_scores()
Same sas above

1.3 IMPORTANT: Calculating test_score_whm(Weighted Harmonic Mean)

The previous two stpes are prepared for calculating whm

具体来说,Weighted Harmonic Mean 函数通过给定的输入值 x1 和 x2,以及它们的权重 w1 和 w2,计算这两个值的加权调和平均值。这可以用于根据权重对不同数值进行加权平均,以反映它们在总平均值中的相对重要性。
函数中的 epsilon 用于确保分母不会为零,从而避免出现除法错误。这种方式可以增加数学计算的稳定性,特别是在输入值或权重值中存在较小的数值时。
这个函数对于某些数学模型、统计分析或工程应用中可能会有用,特别是当需要考虑不同变量之间的权重关系时。 Weighted Harmonic Mean

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

==Microsoft==

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值