【动态规划】合唱队形

给定N位同学的身高,找到最少需要几位同学出列,使得剩余同学按身高形成合唱队形(升序后降序排列)。这是一个最长下降子序列问题,通过动态规划可以将复杂度降低到O(N^2)。文章提供了问题描述、输入输出示例以及解决方案。

问题描述:

N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2⋯,K,他们的身高分别为T1,T2,⋯,TK,  则他们的身高满足T1<...<Ti>Ti+1>⋯>TK(1<=i<=K)。你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

输入描述:

第一行是一个整数N(2<=N<=100),表示同学的总数。第一行有n个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。

输出描述:

一行,这一行只包含一个整数,就是最少需要几位同学出列。

输入:

8
186 186 150 200 160 130 197 220

输出

4

问题分析:

出列人数最少,也就是说留的人最多,也就是序列最长。这样分析就是典型的最长下降子序列问题。只要枚举每一个人站中间时可以的到的最优解。显然它就等于,包括他在内向左求最长上升子序列,向右求最长下降子序列。

我们看一下复杂度:计算最长下降子序列的复杂度是O(N2),一共求N次,总复杂度是O(N3)。这样的复杂度对于这个题的数据范围来说是可以AC的。但有没有更好的方法呢?

其实最长子序列只要一次就可以了。因为最长下降(上升)子序列不受中间人的影响。只要用OPT1求一次最长上升子序列,OPT2求一次最长下降子序列。这样答案就是N-max(opt1[i]+opt2[i]-1)。

复杂度由O(N3)降到了O(N2)。

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<cstri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值