最简单的线性回归神经网络

数据:

# 线性回归
import torch
import numpy as np
import matplotlib.pyplot as plt

# 随机种子,确保每次运行结果一致
torch.manual_seed(42)

# 生成训练数据
X = torch.randn(100, 3)  # 100 个样本,每个样本 3 个特征
true_w = torch.tensor([2.0, 3.0, 4.5] )  # 假设真实权重
true_b = 4.0  # 偏置项
Y = X @ true_w + true_b + torch.randn(100) * 0.2  # 加入一些噪声

# 打印部分数据
print(X[:5])
print(Y[:5])

模型:

import torch.nn as nn

# 定义线性回归模型
class LinearRegressionModel(nn.Module):
    def __init__(self):
        super(LinearRegressionModel, self).__init__()
        # 定义一个线性层,输入为2个特征,输出为1个预测值
        self.linear = nn.Linear(3, 1)  # 输入维度2,输出维度1
    
    def forward(self, x):
        return self.linear(x)  # 前向传播,返回预测结果

# 创建模型实例
model = LinearRegressionModel()

# 损失函数(均方误差)
criterion = nn.MSELoss()

# 优化器(使用 SGD 或 Adam)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 学习率设置为0.01

训练:

# 训练模型
num_epochs = 1000  # 训练 1000 轮
for epoch in range(num_epochs):
    model.train()  # 设置模型为训练模式

    # 前向传播
    predictions = model(X)  # 模型输出预测值
    loss = criterion(predictions.squeeze(), Y)  # 计算损失(注意预测值需要压缩为1D)

    # 反向传播
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()  # 计算梯度
    optimizer.step()  # 更新模型参数

    # 打印损失
    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch + 1}/1000], Loss: {loss.item():.4f}')

# 查看训练后的权重和偏置
print(f'Predicted weight: {model.linear.weight.data.numpy()}')
print(f'Predicted bias: {model.linear.bias.data.numpy()}')

# 在新数据上做预测
with torch.no_grad():  # 评估时不需要计算梯度
    predictions = model(X)

# 可视化预测与实际值
plt.scatter(X[:, 0], Y, color='blue', label='True values')
plt.scatter(X[:, 0], predictions, color='red', label='Predictions')
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值