[题解]LuoGu4092:[HEOI2016/TJOI2016]树

本文探讨了树剖和线段树在处理特定类型问题上的应用,通过实例讲解了如何利用这两种数据结构来求解关于树的最值查询问题。文章详细介绍了树剖和线段树的构建过程,以及如何通过它们高效地更新和查询树上点的属性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题传送门
又见树剖裸题!
想想树剖的性质,询问一个点,往上跳,跳的一段区间一定是连续的,只要在这段区间中找出最大值就是最近的点
所以只要开一个维护最大值的线段树就行啦
另外需要注意根节点初始有标记

Code:

#include <bits/stdc++.h>
#define maxn 100010
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
struct Edge{
	int to, next;
}edge[maxn << 1];
struct Seg{
	int l, r, sum;
}seg[maxn << 2];
int head[maxn], num, d[maxn], fa[maxn], size[maxn], son[maxn], id[maxn], cnt, top[maxn], rk[maxn], n, m;

inline int read(){
	int s = 0, w = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
	for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
	return s * w;
}

void add_edge(int x, int y){ edge[++num].to = y; edge[num].next = head[x]; head[x] = num; }

void dfs(int u){
	size[u] = 1, son[u] = -1;
	for (int i = head[u]; i; i = edge[i].next){
		int v = edge[i].to;
		if (v != fa[u]){
			fa[v] = u;
			dfs(v);
			size[u] += size[v];
			if (son[u] == -1 || son[u] != -1 && size[son[u]] < size[v]) son[u] = v;
		}
	}
}

void dfs(int u, int x){
	id[u] = ++cnt, top[u] = x, rk[cnt] = u;
	if (son[u] == -1) return;
	dfs(son[u], x);
	for (int i = head[u]; i; i = edge[i].next){
		int v = edge[i].to;
		if (v != fa[u] && v != son[u]) dfs(v, v);
	}
}

void pushup(int rt){ seg[rt].sum = max(seg[ls].sum, seg[rs].sum); }

void build(int rt, int l, int r){
	seg[rt].l = l, seg[rt].r = r;
	if (l == r){
		if (l == 1) seg[rt].sum = 1;
		return;
	}
	int mid = (l + r) >> 1;
	build(ls, l, mid); build(rs, mid + 1, r);
	pushup(rt);
}

void update(int rt, int x){
	if (seg[rt].l == seg[rt].r){
		seg[rt].sum = x; return;
	}
	if (seg[ls].r >= x) update(ls, x); else update(rs, x);
	pushup(rt);
}

int query(int rt, int l, int r){
	if (seg[rt].l > r || seg[rt].r < l) return 0;
	if (seg[rt].l >= l && seg[rt].r <= r) return seg[rt].sum;
	return max(query(ls, l, r), query(rs, l, r));
}

int main(){
	n = read(), m = read();
	for (int i = 1; i < n; ++i){
		int x = read(), y = read();
		add_edge(x, y); add_edge(y, x);
	}
	dfs(1); dfs(1, 1); build(1, 1, n);
	while (m--){
		char c = getchar(); for (; c != 'Q' && c != 'C'; c = getchar()); int x = read();
		if (c == 'C') update(1, id[x]); else{
			int ans = 0;
			while (top[x] != 1){
				int s = query(1, id[top[x]], id[x]);
				if (s) ans = s;
				if (ans) break;
				x = fa[top[x]];
			}
			if (!ans) ans = query(1, id[top[x]], id[x]);
			printf("%d\n", rk[ans]);
		}
	}
	return 0;
}

当然这道题也可以用暴力线段树解决
Code:

#include <bits/stdc++.h>
#define maxn 100010
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
struct Edge{
	int to, next;
}edge[maxn << 1];
struct Seg{
	int l, r, d, node;
}seg[maxn << 2];
int num, head[maxn], d[maxn], size[maxn], id[maxn], Index, n, m;

inline int read(){
	int s = 0, w = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
	for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
	return s * w;
}

void addedge(int x, int y){ edge[++num] = (Edge){y, head[x]}, head[x] = num; }

void dfs(int u, int pre){
	d[u] = d[pre] + 1, size[u] = 1, id[u] = ++Index;
	for (int i = head[u]; i; i = edge[i].next){
		int v = edge[i].to;
		if (v != pre) dfs(v, u), size[u] += size[v];
	}
}

void pushdown(int rt){
	if (seg[ls].d < seg[rt].d) seg[ls].d = seg[rt].d, seg[ls].node = seg[rt].node;
	if (seg[rs].d < seg[rt].d) seg[rs].d = seg[rt].d, seg[rs].node = seg[rt].node;
}

void build(int rt, int l, int r){
	seg[rt].l = l, seg[rt].r = r;
	seg[rt].d = 1, seg[rt].node = 1;
	if (l == r) return;
	int mid = (l + r) >> 1;
	build(ls, l, mid), build(rs, mid + 1, r);
}

void update(int rt, int l, int r, int x){
	if (seg[rt].l > r || seg[rt].r < l) return;
	if (seg[rt].l >= l && seg[rt].r <= r){
		if (d[x] > seg[rt].d) seg[rt].d = d[x], seg[rt].node = x;
		return;
	}
	pushdown(rt);
	update(ls, l, r, x), update(rs, l, r, x);
}

int query(int rt, int pos){
	if (seg[rt].l == seg[rt].r) return seg[rt].node;
	pushdown(rt);
	if (pos <= seg[ls].r) return query(ls, pos); else return query(rs, pos);
}

int main(){
	n = read(), m = read();
	for (int i = 1; i < n; ++i){
		int x = read(), y = read();
		addedge(x, y), addedge(y, x);
	}
	dfs(1, 0);
	build(1, 1, n);
	while (m--){
		char opt = getchar();
		for (; opt != 'C' && opt != 'Q'; opt = getchar());
		int x = read();
		if (opt == 'C') update(1, id[x], id[x] + size[x] - 1, x); else printf("%d\n", query(1, id[x]));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值