原题传送门
又见树剖裸题!
想想树剖的性质,询问一个点,往上跳,跳的一段区间一定是连续的,只要在这段区间中找出最大值就是最近的点
所以只要开一个维护最大值的线段树就行啦
另外需要注意根节点初始有标记
Code:
#include <bits/stdc++.h>
#define maxn 100010
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
struct Seg{
int l, r, sum;
}seg[maxn << 2];
int head[maxn], num, d[maxn], fa[maxn], size[maxn], son[maxn], id[maxn], cnt, top[maxn], rk[maxn], n, m;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void add_edge(int x, int y){ edge[++num].to = y; edge[num].next = head[x]; head[x] = num; }
void dfs(int u){
size[u] = 1, son[u] = -1;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u]){
fa[v] = u;
dfs(v);
size[u] += size[v];
if (son[u] == -1 || son[u] != -1 && size[son[u]] < size[v]) son[u] = v;
}
}
}
void dfs(int u, int x){
id[u] = ++cnt, top[u] = x, rk[cnt] = u;
if (son[u] == -1) return;
dfs(son[u], x);
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u] && v != son[u]) dfs(v, v);
}
}
void pushup(int rt){ seg[rt].sum = max(seg[ls].sum, seg[rs].sum); }
void build(int rt, int l, int r){
seg[rt].l = l, seg[rt].r = r;
if (l == r){
if (l == 1) seg[rt].sum = 1;
return;
}
int mid = (l + r) >> 1;
build(ls, l, mid); build(rs, mid + 1, r);
pushup(rt);
}
void update(int rt, int x){
if (seg[rt].l == seg[rt].r){
seg[rt].sum = x; return;
}
if (seg[ls].r >= x) update(ls, x); else update(rs, x);
pushup(rt);
}
int query(int rt, int l, int r){
if (seg[rt].l > r || seg[rt].r < l) return 0;
if (seg[rt].l >= l && seg[rt].r <= r) return seg[rt].sum;
return max(query(ls, l, r), query(rs, l, r));
}
int main(){
n = read(), m = read();
for (int i = 1; i < n; ++i){
int x = read(), y = read();
add_edge(x, y); add_edge(y, x);
}
dfs(1); dfs(1, 1); build(1, 1, n);
while (m--){
char c = getchar(); for (; c != 'Q' && c != 'C'; c = getchar()); int x = read();
if (c == 'C') update(1, id[x]); else{
int ans = 0;
while (top[x] != 1){
int s = query(1, id[top[x]], id[x]);
if (s) ans = s;
if (ans) break;
x = fa[top[x]];
}
if (!ans) ans = query(1, id[top[x]], id[x]);
printf("%d\n", rk[ans]);
}
}
return 0;
}
当然这道题也可以用暴力线段树解决
Code:
#include <bits/stdc++.h>
#define maxn 100010
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
struct Edge{
int to, next;
}edge[maxn << 1];
struct Seg{
int l, r, d, node;
}seg[maxn << 2];
int num, head[maxn], d[maxn], size[maxn], id[maxn], Index, n, m;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y){ edge[++num] = (Edge){y, head[x]}, head[x] = num; }
void dfs(int u, int pre){
d[u] = d[pre] + 1, size[u] = 1, id[u] = ++Index;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != pre) dfs(v, u), size[u] += size[v];
}
}
void pushdown(int rt){
if (seg[ls].d < seg[rt].d) seg[ls].d = seg[rt].d, seg[ls].node = seg[rt].node;
if (seg[rs].d < seg[rt].d) seg[rs].d = seg[rt].d, seg[rs].node = seg[rt].node;
}
void build(int rt, int l, int r){
seg[rt].l = l, seg[rt].r = r;
seg[rt].d = 1, seg[rt].node = 1;
if (l == r) return;
int mid = (l + r) >> 1;
build(ls, l, mid), build(rs, mid + 1, r);
}
void update(int rt, int l, int r, int x){
if (seg[rt].l > r || seg[rt].r < l) return;
if (seg[rt].l >= l && seg[rt].r <= r){
if (d[x] > seg[rt].d) seg[rt].d = d[x], seg[rt].node = x;
return;
}
pushdown(rt);
update(ls, l, r, x), update(rs, l, r, x);
}
int query(int rt, int pos){
if (seg[rt].l == seg[rt].r) return seg[rt].node;
pushdown(rt);
if (pos <= seg[ls].r) return query(ls, pos); else return query(rs, pos);
}
int main(){
n = read(), m = read();
for (int i = 1; i < n; ++i){
int x = read(), y = read();
addedge(x, y), addedge(y, x);
}
dfs(1, 0);
build(1, 1, n);
while (m--){
char opt = getchar();
for (; opt != 'C' && opt != 'Q'; opt = getchar());
int x = read();
if (opt == 'C') update(1, id[x], id[x] + size[x] - 1, x); else printf("%d\n", query(1, id[x]));
}
return 0;
}