import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
模板匹配
模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)
# 模板匹配
img = cv2.imread("lena.jpg",0)
template = cv2.imread("face.jpg",0)
h,w = template.shape[:2]
img.shape
(263, 263)
template.shape
(110, 85)
- TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
- TM_CCORR:计算相关性,计算出来的值越大,越相关
- TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
- TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
- TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
- TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
公式:https://docs.opencv.org/3.3.1/df/dfb/group__imgproc__object.html#ga3a7850640f1fe1f58fe91a2d7583695d
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
res.shape
(154, 179)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
min_val
39168.0
max_val
74403584.0
min_loc
(107, 89)
max_loc
(159, 62)
for meth in methods:
img2 = img.copy()
# 匹配方法的真值
method = eval(meth)
print (method)
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img2, top_left, bottom_right, 255, 2)
plt.subplot(121), plt.imshow(res, cmap='gray')
plt.xticks([]), plt.yticks([]) # 隐藏坐标轴
plt.subplot(122), plt.imshow(img2, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()
4
![[外链图片转存失败(img-lvEkxpEO-1565702553022)(output_14_1.png)]](https://i-blog.csdnimg.cn/blog_migrate/e4643642ef7145778a600de8c59b8350.png)
5
![[外链图片转存失败(img-suZ3jcG0-1565702553023)(output_14_3.png)]](https://i-blog.csdnimg.cn/blog_migrate/ccc6189a37fa1fb5622613bc077c168d.png)
2
![[外链图片转存失败(img-tSzrpy5i-1565702553024)(output_14_5.png)]](https://i-blog.csdnimg.cn/blog_migrate/29ef7f2aa290607690df9c5af6d9908f.png)
3
![[外链图片转存失败(img-f3EM5l8x-1565702553025)(output_14_7.png)]](https://i-blog.csdnimg.cn/blog_migrate/20d3edc16464de5d99a811c64651aadd.png)
0
![[外链图片转存失败(img-KeITxq6I-1565702553026)(output_14_9.png)]](https://i-blog.csdnimg.cn/blog_migrate/17838e16d4d8b5e344c80b045501228f.png)
1
![[外链图片转存失败(img-ZakQ24PB-1565702553028)(output_14_11.png)]](https://i-blog.csdnimg.cn/blog_migrate/b30e83556577e453c8693f0c6cf2ee12.png)
匹配多个对象
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]): # *号表示可选参数
bottom_right = (pt[0] + w, pt[1] + h)
cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()
plt.imshow(img_rgb)
<matplotlib.image.AxesImage at 0x2a809ae5eb8>
![[外链图片转存失败(img-O4RydjTr-1565702553029)(output_16_1.png)]](https://i-blog.csdnimg.cn/blog_migrate/5dbd99f7146f121f93dbb30cbf5970c9.png)
本文深入探讨了模板匹配技术,一种广泛应用于图像处理领域的算法。通过使用OpenCV库,文章详细解释了六种模板匹配方法,包括TM_SQDIFF、TM_CCORR、TM_CCOEFF及其归一化版本。这些方法用于计算图像中模板与目标区域的相似度,适用于对象检测等场景。
1862





