【人工智能项目】Python Flask搭建yolov3目标检测系统

本文介绍如何使用Python的Flask框架配合YOLOv3深度学习模型,构建一个实时的目标检测API。通过后端代码解析Base64图像数据,进行对象检测并返回结果。适合初学者理解深度学习在实际应用中的部署过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【人工智能项目】Python Flask搭建yolov3目标检测系统

在这里插入图片描述

后端代码

from flask import Flask, request, jsonify
from PIL import Image
import numpy as np
import base64
import io
import os

from backend.tf_inference import load_model, inference

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

sess, detection_graph = load_model()

app = Flask(__name__)

@app.route('/api/', methods=["POST"])
def main_interface():
    response = request.get_json()
    data_str = response['image']
    point = data_str.find(',')
    base64_str = data_str[point:]  # remove unused part like this: "data:image/jpeg;base64,"

    image = base64.b64decode(base64_str)       
    img = Image.open(io.BytesIO(image))

    if(img.mode!='RGB'):
        img = img.convert("RGB")
    
    # convert to numpy array.
    img_arr = np.array(img)

    # do object detection in inference function.
    results = inference(sess, detection_graph, img_arr, conf_thresh=0.7)
    print(results)

    return jsonify(results)

@app.after_request
def add_headers(response):
    response.headers.add('Access-Control-Allow-Origin', '*')
    response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
    return response


if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0')

展示部分

python -m http.server

在这里插入图片描述

python app.py

在这里插入图片描述

前端展示部分
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mind_programmonkey

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值