[BZOJ]1717 [Usaco2006 Dec]Milk Patterns 二分答案

USACO产奶模式题解
本文介绍了一道USACO竞赛题“MilkPatterns”的解决方案,该题旨在寻找出现次数最多的连续奶质模式。文章详细解释了如何通过二分枚举长度并结合分组策略来高效解决此问题。

1717: [Usaco2006 Dec]Milk Patterns 产奶的模式

Time Limit: 5 Sec   Memory Limit: 64 MB
Submit: 1283   Solved: 692
[ Submit][ Status][ Discuss]

Description

农夫John发现他的奶牛产奶的质量一直在变动。经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠。我们称之为一个“模式”。 John的牛奶按质量可以被赋予一个0到1000000之间的数。并且John记录了N(1<=N<=20000)天的牛奶质量值。他想知道最长的出现了至少K(2<=K<=N)次的模式的长度。比如1 2 3 2 3 2 3 1 中 2 3 2 3出现了两次。当K=2时,这个长度为4。

Input

* Line 1: 两个整数 N,K。

* Lines 2..N+1: 每行一个整数表示当天的质量值。

Output

* Line 1: 一个整数:N天中最长的出现了至少K次的模式的长度

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

HINT

Source

[ Submit][ Status][ Discuss]


HOME Back




这道题是论文上的题,作法是二分枚举长度再分组,若有一组成员个数超过题目所要求的k的话,就可以.二分性同上篇博客.

#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=20005;
int wa[maxn],wb[maxn],rank[maxn],sa[maxn],height[maxn],w[maxn],ws[maxn],wv[maxn],tot;
struct aa{
    int v,num;
}s[maxn];
inline bool cmp1(aa a,aa b){return a.v<b.v;}
inline bool cmp(int *r,int a,int b,int l){
    return r[a]==r[b]&&r[a+l]==r[b+l];
}
inline const int read(){
    register int f=1,x=0;
	register char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
	return f*x;
}
inline void da(int *r,int n,int m){
    int *x=wa,*y=wb;
	register int i,j,p=0;
	for(i=0;i<m;i++) ws[i]=0;
	for(i=0;i<n;i++) ws[x[i]=r[i]]++;
	for(i=1;i<m;i++) ws[i]+=ws[i-1];
	for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
	for(p=1,j=1;p<n;m=p,j*=2){
	    for(p=0,i=n-j;i<n;i++) y[p++]=i;
		for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
		for(i=0;i<n;i++) wv[i]=x[y[i]];
		for(i=0;i<m;i++) ws[i]=0;
		for(i=0;i<n;i++) ws[wv[i]]++;
		for(i=1;i<m;i++) ws[i]+=ws[i-1];
		for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
		for(swap(x,y),x[sa[0]]=0,p=1,i=1;i<n;i++)
			x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
	}
}
inline void calc_height(int *r,int n){
    register int i,j,k=0;
    for(i=1;i<=n;i++) rank[sa[i]]=i;
	for(i=0;i<n;height[rank[i++]]=k)
		for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
}
inline bool check(int count,int n,int k){
    int all=1;
	for(int i=1;i<n;i++){
		if(height[i]<count) all=0;
	    if(++all>=k) return true;
	}
	return false;
}
int main(){
    int n=read(),k=read(),ans=0,pre=-1;
	for(register int i=0;i<n;i++) s[i].v=read(),s[i].num=i;
    sort(s,s+n,cmp1);
	for(register int i=0;i<n;i++){
	    if(s[i].v>pre) pre=s[i].v,tot++;
		w[s[i].num]=tot;
	}
	w[n++]=0,da(w,n,n);
	calc_height(w,n-1);
	int lf=0,rg=n-1;
	while(lf<=rg){
	    int mid=(lf+rg)>>1;
		if(check(mid,n,k)) ans=mid,lf=mid+1;
		else rg=mid-1;
	}
	while(check(ans+1,n,k)) ans++;
	printf("%d\n",ans);
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值