//线段树涂色问题: 对每一段区间进行染色 统计出现的颜色和该颜色的长度
//这里建图时 以线段长度1为单位节点
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 20001;
int temp;
struct Node
{
int L;
int R;
int kind;
};
Node segtree[N];
int color[8001];
void create_tree( int n, int l, int r )
{
segtree[n].L = l;
segtree[n].R = r;
segtree[n].kind = -1;
if( l + 1 == r ) return;
int mid = ( l + r ) >> 1;
create_tree( n * 2, l, mid );
create_tree( n * 2 + 1, mid, r );
}
void insert_tree( int n, int l, int r, int c)
{
if( l == r ) return;
if( segtree[n].kind == c ) return; //颜色相同,返回
if( l == segtree[n].L && segtree[n].R == r )
{
segtree[n].kind = c;
return;
}
if( segtree[n].kind >= 0 ) //存在颜色,做更新
{
segtree[ n * 2 ].kind = segtree[n].kind;
segtree[ n * 2 + 1 ].kind = segtree[n].kind;
segtree[n].kind = -2; //传值下去,完成该整段区间更新后赋值-2
}
int mid = ( segtree[n].L + segtree[n].R ) >> 1;
if( r <= mid )
{
insert_tree( n * 2, l, r, c );
}
else if( l >= mid )
{
insert_tree( n * 2 + 1, l, r, c );
}
else
{
insert_tree( n * 2, l, mid, c);
insert_tree( n * 2 + 1, mid, r, c );
}
}
void count( int n ) //先序遍历
{
if( segtree[n].kind != -1 && segtree[n].kind != -2 ) //颜色不为-1和-2
{
if( segtree[n].kind != temp )
{
color[ segtree[n].kind ]++;
temp = segtree[n].kind;
}
return;
}
if( segtree[n].L + 1 != segtree[n].R ) //非子节点
{
count( n * 2 );
count( n * 2 + 1 );
}
else temp = -1;
}
int main()
{
int i, t;
while( scanf("%d", &t) != EOF )
{
create_tree( 1, 0, 8000 );
for(i=0;i<t;i++)
{
int a,b,c;
scanf("%d%d%d", &a, &b, &c);
insert_tree(1, a, b, c);
}
temp = -1;
fill(color,color+8001,0);
count(1);
for( i = 0; i <= 8000; i++ )
{
if( color[i] ) printf("%d %d\n", i, color[i]);
}
printf("\n");
}
return 0;
}
//线段树指针形式
//注释的代码 WA 未解
#include<iostream>
#include<cstdio>
using namespace std;
const int MaxN=8002;
struct Cnode
{
int L,R;
Cnode *pLeft,*pRight;
int col;
};
Cnode Tree[MaxN*2];
int Ans[MaxN];
int Col[MaxN];
int nCount=0;
int m;
int temp;
void BuildTree(Cnode *pRoot,int L,int R) //Notice ---> 每个节点代表一个区间
{
pRoot->L=L;
pRoot->R=R;
pRoot->col=-1;
if(L+1==R)
{
pRoot->pLeft=NULL;
pRoot->pRight=NULL;
return;
}
nCount++;
pRoot->pLeft = Tree + nCount;
nCount++;
pRoot->pRight = Tree + nCount;
BuildTree( pRoot->pLeft, L, ( L + R )/2);
BuildTree( pRoot->pRight, (L + R) / 2, R);
}
int Mid( Cnode * pRoot)
{
return (pRoot->L + pRoot->R)/2;
}
void update(Cnode *pRoot,int a,int b,int c)
{
if(pRoot->col == c) return; //同色不处理
if(pRoot->L==a && pRoot->R==b) //完全覆盖才涂色
{
pRoot->col=c;
return ;
}
if(pRoot->col>=0)
{
pRoot->pLeft->col = pRoot->pRight->col = pRoot->col;
pRoot->col=-2;
}
if(b<=Mid(pRoot)) update(pRoot->pLeft,a,b,c);
else if(a>= (Mid(pRoot)) ) update(pRoot->pRight,a,b,c);
else
{
update(pRoot->pLeft, a, Mid(pRoot), c);
update(pRoot->pRight, Mid(pRoot), b, c);
}
}
/*void Query(Cnode *pRoot,int a,int b)
{
if(pRoot == NULL) return;
if(pRoot->col!=-1 && pRoot->col!=-2)
{
for(int i=pRoot->L; i<=pRoot->R; i++)
{
Col[i]=pRoot->col;
}
return;
}
if(b<= Mid(pRoot) )
Query(pRoot->pLeft,a,b);
else if(a >=(Mid(pRoot)) )
Query(pRoot->pRight,a,b);
else
{
Query(pRoot->pLeft, a, Mid(pRoot));
Query(pRoot->pRight, Mid(pRoot), b);
}
}*/
void count( Cnode *pRoot ) //先序遍历
{
if( pRoot->col != -1 && pRoot->col != -2 ) //颜色不为-1和-2
{
if( pRoot->col != temp )
{
Ans[ pRoot->col ]++;
temp = pRoot->col;
}
return;
}
if( pRoot->L + 1 != pRoot->R ) //非子节点
{
count( pRoot->pLeft );
count( pRoot->pRight );
}
else temp = -1;
}
void run()
{
int i;
nCount=0;
BuildTree(Tree,0,MaxN);
fill(Ans,Ans+MaxN,0);
fill(Col,Col+MaxN,-1);
for(i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
update(Tree,a,b,c);
}
/*Query(Tree,0,MaxN);
int init=-1;
for(i=0;i<MaxN;i++) if(Col[i]!=-1)
{
if(Col[i]!=init)
{
Ans[Col[i]]++;
init=Col[i];
}
}*/
temp = -1;
count(Tree);
for(i=0;i<MaxN;i++) if(Ans[i])
{
printf("%d %d\n",i,Ans[i]);
}
printf("\n");
}
int main()
{
while(scanf("%d",&m)!=EOF) run();
return 0;
}Example
4
0 4 4
0 3 1
3 4 2
0 2 2
0 2 3
-1---->未赋值
-2---->该节点已经结束lazy操作往下跟新

本文介绍了一种使用线段树解决区间染色问题的方法,通过递归更新和查询来统计不同颜色出现的次数及长度。代码示例中包含了两种实现方式:数组形式和指针形式。
208

被折叠的 条评论
为什么被折叠?



