用途:图像降噪(图像修复,复原中),TVloss是一种较为有效的正则项,来保持图像的光滑性
TVloss的去噪效果还算不错,但是会导致图像变得过平滑,感觉这样的话,可能加上TVLoss就会好点了。
全变分模型主要是依靠梯度下降流岁图像进行平滑处理的模型,希望在图像的内部对图像进行平滑,使得相邻像素的差值较小,,图像的轮廓(边缘)尽可能不去平滑.数学定义如下:

但是这个函数是不可微的,是非凸的,所以对于二维全变分有另外一种定义:

这个就是凸函数了. ..所以全变分求出来是一个数值.
如果仿照一维信号的去噪的话,则基于全变分的图像去噪可以看成是求解优化的问题:

function image=bldconv(g)
a1=0.1;
a2=0.01;
PQ=paddedsize(size(g));
G=fft2(g,PQ(1),PQ(2));
[y x]=size(G);
htemp=ones(3);
h0=freqz2(htemp,PQ(1),PQ(2));
R=Rcreat(y,x);
H=h0;
for k=1:10 %计算IMG和psf
iMG=(conj(H).*G)./((conj(H).*H)+a1*R);
H=conj(iMG).*G./((conj(iMG).*iMG)+a2*R);
end
IMG=mat2gray(real(ifft2(iMG)));
image=IMG(1:size(g,1),1:size(g,2));
imwrite(image,'testfile.tif');
imshow(image,[]);
hold on;
end
%===========================
%计算R矩阵的函数Rcreat
%===========================
function R=Rcreat(y,x)
%R矩阵生成子函数
%by Realasking
%为bdeconv.m编制
i=1:y;
j=1:x;
RI=zeros(y,x);
RJ=zeros(y,x);
R=zeros(y,x);
for k=1:y %向量化代码生成R的矩阵
RI(k,i)=-2*cos(2*pi*i./y);
end
for k=1:x
RJ(j,k)=-2*cos(2*pi*j'./x);
end
Img=imread('Baboon1.bmp'); %读取图片
PSF=fspecial('motion',3); %创建PSF
gb=imfilter(Img,PSF,'circular'); %创建退化图像
Img=imnoise(gb,'gaussian',0,0.01); %加噪声
figure,imshow(Img)
Img=double(Img);
Img0=Img;
PQ=paddedsize(size(Img));
IMG=fft2(Img,PQ(1),PQ(2));
IMG0=fft2(Img0,PQ(1),PQ(2));
[nrow,ncol]=size(Img); % 获取图像尺寸大小
lamda1=0.02;
lamda2=0.02;
dt=0.28; % 0.25-0.35为最佳
G=gauss(Img,7,3);
Ix = 0.5*(G(:,[2:ncol,ncol])-G(:,[1,1:ncol-1])); % x方向梯度
Iy = 0.5*(G([2:nrow,nrow],:)-G([1,1:nrow-1],:)); % y方向梯度
gradG = Ix.^2+Iy.^2; % 梯度大小
P=1+1./(1+gradG); %自适应滤波器
deltax=Img0; %zeros(nrow,ncol); %产生与图像大小相同的矩阵
deltay=Img0; %zeros(nrow,ncol);
htemp=ones(3);
h0=freqz2(htemp,PQ(1),PQ(2));
R=Rcreat(PQ(1),PQ(2));
H=h0;
for M=1:10 % 设置迭代次数
for i=2:(nrow-1)
for j=2:(ncol-1)
deltax(i,j)=(Img(i+1,j)-Img(i,j))./(((Img(i+1,j)-Img(i,j)).^2+(Img(i,j+1)-Img(i,j-1)).^2/4+1).^(1-0.5.*P(i,j)))-(Img(i,j)-Img(i-1,j))./(((Img(i,j)-Img(i-1,j)).^2+(Img(i-1,j+1)-Img(i-1,j-1)).^2/4+1).^(1-0.5.*P(i-1,j)));
deltay(i,j)=(Img(i,j+1)-Img(i,j))./(((Img(i+1,j)-Img(i-1,j)).^2/4+(Img(i,j+1)-Img(i,j)).^2+1).^(1-0.5.*P(i,j)))-(Img(i,j)-Img(i,j-1))./(((Img(i+1,j-1)-Img(i-1,j-1)).^2/4+(Img(i,j)-Img(i,j-1)).^2+1).^(1-0.5.*P(i,j-1)));
end
end
div=deltax+deltay;
DIV=fft2(div,PQ(1),PQ(2));
IMG=IMG+dt*(-conj(H).*H.*IMG+conj(H).*IMG0+lamda1.*DIV);
H=conj(IMG).*IMG0./(conj(IMG).*IMG+lamda2.*R);
Img1=real(ifft2(IMG));
Img=Img1(1:size(Img0,1),1:size(Img0,2));
end
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
三、运行结果

1139

被折叠的 条评论
为什么被折叠?



