一、简介


数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(Pulse Code Modulation),即脉冲编码调制。

脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。抽样速率采用8Kbit/s。
  量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
  一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
  编码,就是用一组二进制码组来表示每一个有固定电平的量化值。然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
  话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PCM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码后转换成二进制码。对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有2^8=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大

均匀量化的小信号的信噪比小.
非均匀量化: 由于一些信源信号, 如语音信号, 小幅度信号发生的概率大于大幅度信号的概率, 采用非均匀量化(即小幅度信号的量化步长小于大幅度信号的的量化步长) 效果更好好 (表现在语音信号上, 可以使信号具有足够的信噪比)

非均匀量化特性通常是把信号通过一个非线性的设备, 小信号幅度进行放大, 大信号幅度进行压缩, 再通过均匀量化实现.


二、源代码
function varargout = PCM(varargin)
% PCM M-file for PCM.fig
%      PCM was designed in order to show how PCM works
%
%      To simplify the undesrtanding of this method, the program first takes
%      a sine wave. Then you can choose a sampling scheme, and you can see
%      the output of the sampler. You can choose one out of three sampling 
%      methods.
%      If you choose natural sampling; then you will have the chance to modify
%      the sampling window, and see the effects of this change in the output of
%      the sampler.
%
%      Once you got the sampled signal you can quantize it by a method that is 
%      known as two rules and an alorithm.
%      The option Squeezing and Stretching shows the best G(x) tha minimizes 
%      the MSE. You can better understand this using the book
%      Telecommunications Demystified written by Carl Nassar. You can find
%      information about this on Chapter four of that book. 
%      You can edit the bit's number and the number of iterations of the
%      algorithm. The bigger the number of bits, the smaller the MSE.
%      The picture shows the signal after quantization, the first iteration
%      in the quantization process and the output of the quantizer
%      
%      Then, by pressing the Bit Stream button you will see the PCM output
%      of the signal that you have selected in the input area.
%      
%      Everytime you change something, you must push the button that is
%      related with the change you have just made. For example if don't
%      want to work anymore with the sine wave and you choose the random
%      signal, then you have to push the plot button in order to see the
%      plot of the random signal, and if you change of sampling method you
%      have to push the sampling button, when you changhe the sampling 
%      window. So if you change the number of codewords or the number of 
%      the iterations you will have to press the quantize button again. 

% Edit the above text to modify the response to help PCM

% Last Modified by GUIDE v2.5 14-Mar-2007 12:32:35

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @PCM_OpeningFcn, ...
                   'gui_OutputFcn',  @PCM_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before PCM is made visible.
function PCM_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to PCM (see VARARGIN)

% Choose default command line output for PCM
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes PCM wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = PCM_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
if (get(handles.radiobutton2,'Value') == get(handles.radiobutton2,'Max')) % Verifies if Sine wave was selected
    t=linspace(0,1,60); % Creates the time variable from 0 to 1 with a length of 60 or 60 points
    y=sin(2*pi*t); % Creates a sine wave of frequency 1 with the t vector 
    axes(handles.axesanalog) % Select the proper axes  
    plot(t,y); 
    xlabel('Time');
    ylabel('Amplitude');
    grid on;
elseif (get(handles.radiobutton3,'Value') == get(handles.radiobutton3,'Max')) % Verifies if Random signal was selected
    t=linspace(0,60,60); % Creates the time variable from 0 to 60 with a length of 60 or 60 points
    y=rand([1 60]); % Creates a random signal of length 60 or with 60 points
    axes(handles.axesanalog) % Select the proper axes    
    plot(t,y);
    xlabel('Time');
    ylabel('Amplitude');
    grid on;
end
handles.amp=y; % Saves the input signal y in the amp variable at the handles structure
handles.time=t; % Saves the input signal t in the time variable at the handles structure
guidata(gcbo,handles); % Save the changes made to the handles structure

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
close; % Close the application

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
if (get(handles.radiobutton4,'Value') == get(handles.radiobutton4,'Max'))
    t=handles.time; % recover the saved variable t from the handles structure
    y=handles.amp; % recover the saved variable y from the handles structure
    p=ones(1, length(t)); % creates a vector containing only ones 
    outideal=p.*y; % Multiplies the two vectors to get the output of an ideal sampler
    axes(handles.axessampled) % Select the proper axes
    stem(t,outideal,'ro');
    xlabel('Time');
    ylabel('Amplitude');
    grid on;
    handles.signal=outideal;
    guidata(gcbo,handles);
elseif (get(handles.radiobutton5,'Value') == get(handles.radiobutton5,'Max'))
    t=handles.time; % recover the saved variable t from the handles structure
    y=handles.amp; % recover the saved variable y from the handles structure
    p=ones(1, length(t)); % creates a vector containing only ones 
    outhold=p.*y; % Multiplies the two vectors to get the output of an ideal sampler
    axes(handles.axessampled) % Select the proper axes
    stairs(t,outhold,'r'); %Plot the signal in a stairs shape making it looks like a zero order hold sampler
    xlabel('Time');
    ylabel('Amplitude');
    grid on;
    handles.signal=outhold;
    guidata(gcbo,handles);
elseif (get(handles.radiobutton6,'Value') == get(handles.radiobutton6,'Max'))
    t=handles.time; % recover the saved variable t from the handles structure
    y=handles.amp; % recover the saved variable y from the handles structure
    test1=eval(get(handles.edit1,'String')); % Evals the value that is contained in the Edit 1
    if isnan(test1) % Test if it is a number or not. If not it displays an error message
        errordlg('You must enter a numeric value','Bad Input','modal')
    end
    lenp=length(t)/length(test1); %Calculates the length of the vector so it can make it a periodic signal with the 
    %right size so it can work properly
    p=ones(1, lenp); %  Creates a vector of only ones of lenght lenp 
    per=test1'*p; % Creates a matrix, containing lenp times the vector test1
    per=per(:); % Concatenates the columns of the matrix so it becomes a vector
    outnormal=per'.*y; % Multiplies the two vectors to get the output of a normal sampler
    axes(handles.axessampled) % Select the proper axes
    plot(t,outnormal,'r');
    xlabel('Time');
    ylabel('Amplitude');
    grid on;
    handles.signal=outnormal;
    guidata(gcbo,handles);
end

function edit1_Callback(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
%        str2double(get(hObject,'String')) returns contents of edit1 as a double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in radiobutton6.
function radiobutton6_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton6
if (get(handles.radiobutton6,'Value') == get(handles.radiobutton6,'Max'))    
    set(handles.edit1,'Enable', 'on'); % Enables the Edit1 object once this radiobutton is selected
end

% --- Executes on button press in radiobutton4.
function radiobutton4_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton4
if (get(handles.radiobutton6,'Value') == get(handles.radiobutton6,'Min'))    
    set(handles.edit1,'Enable', 'off'); % Disables the Edit1 object once this radiobutton is selected
end

% --- Executes on button press in radiobutton5.
function radiobutton5_Callback(hObject, eventdata, handles)
% hObject    handle to radiobutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton5
if (get(handles.radiobutton6,'Value') == get(handles.radiobutton6,'Min'))    
    set(handles.edit1,'Enable', 'off'); % Disables the Edit1 object once this radiobutton is selected
end

```
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
三、运行结果 

【信号处理】 PCM调制含GUI matlab源码_matlab源码