一、模型介绍

元胞自动机就是类似于一个系统,各个单元,即元胞都有联系,但整体的系统又对各个小的单元产生影响,这影响便可定义为规则。而我们的目的就是找到这些规则来进行预测未来系统的发展。(通过计算机的计算,来模拟一个复杂的自然过程)

元胞自动机是一种时间、空间、状态都离散,空间相互作用和时间因果关系为局部的网格动力学模型,具有模拟复杂系统时空演化过程的能力。

元胞自动机(CA)是一种用来仿真局部规则和局部联系的方法。典型的元

胞自动机是定义在网格上的,每一个点上的网格代表一个元胞与一种有限的状

态。变化规则适用于每一个元胞并且同时进行。

组成:

元胞:一个元胞相当于一个储存元件、可以记录状态

元胞空间:分为一维、二维、三维

状态和初始状态:就是初始的状态领域:一个元胞的领域由其周围的元胞组成

转换规则:状态转移的函数(多个规则一起作用)(典型的变化规则,决定于元胞的状态,以及其( 4 或 8 )邻居的状态。)

简单讲解:https://wk.baidu.com/view/ddf76d8c50e2524de4187e45?pcf=2&bfetype=new

二、模型适用范围或案例

1、容易与GIS、遥感数据处理等系统结合

2、城市发展演变、土地利用变化

3、应用于物理模拟,生物模拟等领域

4、森林火灾模拟

三、模型输入变量解释

元胞自动机仿真需要理解三点:

1、元胞:在matlab中可以理解为矩阵中的一点或多点组成的方形块,一般我们用矩阵中的一点代表一个元胞。

2、变化规则:元胞的变化规则决定元胞下一刻的状态。

3、元胞的状态:元胞的状态是自定义的,通常是对立的状态,比如生物的存活状态或死亡状态,红灯或绿灯,该点有障碍物或者没有障碍物等等。

四、模型输出变量解释

输出的是一个演化过程演化结束后的路径

五、模型相应代码

​
%% NOTE


% Total runtime for this code was about 7.5 hours on the computer used by

% the original researcher (for 1000 run average of 3 different adherence

% values).

% This runtime is expected to vary from device to device, and is being used

% here to obtain a general comparison for runtime for the different

% models. It is not for a universal runtime value


% When run, this code does not display anything at the beginning. However,

% it will produce 2 graphs for each P_adh value every 2.5 hours approx.


%% Documentation


% n size of each dimension of our square cellular automata grid

% P_HIV fraction (probability) of cells initially infected by virus

% P_i probability of a healthy cell becoming infected if its

% neighborhood contains 1 I1 cell or X I2 cells

% P_v probability of a healthy cell becoming infected by coming

% in contact with a virus randomly (not from its

% neighborhood)

% P_RH Probability of a dead cell becoming replaced by a healthy

% cell

% P_RI Probability of a dead cell becoming replaced by an infected

% cell

% P_T1 Probability of a healthy cell receiving therapy 1

% P_iT1 Probability of a healthy cell receiving therapy 1 of

% becoming infected

% P_T2 Probability of a healthy cell receiving therapy 2

% P_iT2 Probability of a healthy cell receiving therapy 2 of

% becoming infected

% X Number of I2 cells in the neighborhood of an H cell that

% can cause it to become infected

% tau1 tau1 is the number of timesteps it takes for an acute

% infected cell to become latent.

% tau2 tau2 is the number of timesteps it takes for a latent

% infected cell to become dead.

% tau3 tau3 is the number of timesteps after which a healthy

% cell receiving dual therapy becomes a healthy cell again

% totalsteps totalsteps is the total number of steps of the CA (the

% total number of weeks of simulations)

% grid our cellular automata (CA) grid

% tempgrid tempgrid is a temporary grid full of random numbers that is

% used to randomly add different states to our CA grid.

% taugrid taugrid is a grid the same size as our CA grid that stores

% the number of timesteps that a cell has been in state I_1.

% If the number reaches tau1, then the state changes to I_2.

% state state is a [9 x totalsteps] size matrix that stores

% the total number of cells in each state at each timestep

% and the last 2 rows store total healthy and total infected

% cells

% timestep each simulation step of the cellular automata

% 1 timestep = 1 week of time in the real world

% nextgrid nextgrid is a temporary grid. It is a copy of the CA grid

% from the previous simulation. It stores all the CA rule

% updates of the current timestep and stores it all back to

% the grid to display.


%% Clean-up


clc; % clears command window

clear all; % clears workspace and deletes all variables

% close all; % closes all open figures


%% Parameters


n = 100; % meaning that our grid will have the dimensions n x n

P_HIV = 0.05; % initial grid will have P_hiv acute infected cells

P_i = 0.997; % probability of infection by neighbors

P_v = 0.00001; % probability of infection by random viral contact

P_RH = 0.99; % probability of dead cell being replaced by healthy

P_RI = 0.00001; % probability of dead cell being replaced by infected

P_T1 = 0.70; % probability of cell receiving therapy 1

P_iT1 = 0.07; % probability of infection of healthy with therapy 1

P_T2 = 0.50; % probability of cell receiving therapy 2

P_iT2 = 0.05; % probability of infection of healthy with therapy 2

X = 4; % there must be at least X I_2 neighbors to infect cell

tau1 = 4; % time delay for I_1 cell to become I_2 cell

tau2 = 1; % time delay for I_2 cell to become D cell

tau3 = 1; % time delay for H_Tb cell to become H cell

totalsteps = 600; % total number of weeks of simulation to be performed

T_start = 20; % The medication therapy will start on week T_start

totalruns = 1000; % total number of times to run the simulation to get an

% average


%% States


% State 1: H: Healthy (Color- Green)

% State 2: H_T1: Healthy with therapy 1 (Color- Red)

% State 3: H_T2: Healthy with therapy 2 (Color- Red)

% State 4: H_Tb: Healthy with dual therapy (Color- Red)

% State 5: I_1: Active Infected (Color- Cyan)

% State 6: I_2: Latent Infected (Color- Blue)

% State 7: D: Dead (Color- Black)


%% Simulation


for P_adh = 0.5:0.2:0.9


state1 = zeros(totalruns,totalsteps);

state2 = zeros(totalruns,totalsteps);

state3 = zeros(totalruns,totalsteps);

state4 = zeros(totalruns,totalsteps);

state5 = zeros(totalruns,totalsteps);

state6 = zeros(totalruns,totalsteps);

state7 = zeros(totalruns,totalsteps);


for run = 1:totalruns



state1dev = std(state1);

state2dev = std(state2);

state3dev = std(state3);

state4dev = std(state4);

state5dev = std(state5);

state6dev = std(state6);

state7dev = std(state7);

state8dev = state1dev + state2dev + state3dev + state4dev;

state9dev = state5dev + state6dev;


state1mean = mean(state1);

state2mean = mean(state2);

state3mean = mean(state3);

state4mean = mean(state4);

state5mean = mean(state5);

state6mean = mean(state6);

state7mean = mean(state7);

state8mean = state1mean + state2mean + state3mean + state4mean;

state9mean = state5mean + state6mean;


% The following lines of code are to display a graph of each state of

% cells during simulation

set(figure, 'OuterPosition', [200 100 700 500]) % sets figure window size

plot( 1:totalsteps , state1mean, 'g', ...

1:totalsteps , state2mean, 'r', ...

1:totalsteps , state3mean, 'm', ...

1:totalsteps , state4mean, 'y', ...

1:totalsteps , state5mean, 'c', ...

1:totalsteps , state6mean, 'b', ...

1:totalsteps , state7mean, 'k' , 'linewidth', 2 );

xlim([0 600]);

ylim([0 10000]);

hold on;

gridxy(20,'Color',[0.8 0.5 0.0],'linewidth',5) ;

errorbar( 1:15:totalsteps , state1mean(1:15:totalsteps), state1dev(1:15:totalsteps), 'g');

errorbar( 1:15:totalsteps , state2mean(1:15:totalsteps), state2dev(1:15:totalsteps), 'r');

errorbar( 1:15:totalsteps , state3mean(1:15:totalsteps), state3dev(1:15:totalsteps), 'm');

errorbar( 1:15:totalsteps , state4mean(1:15:totalsteps), state4dev(1:15:totalsteps), 'y');

errorbar( 1:15:totalsteps , state5mean(1:15:totalsteps), state5dev(1:15:totalsteps), 'c');

errorbar( 1:15:totalsteps , state6mean(1:15:totalsteps), state6dev(1:15:totalsteps), 'b');

errorbar( 1:15:totalsteps , state7mean(1:15:totalsteps), state7dev(1:15:totalsteps), 'k');

legend( 'Therapy start week', 'Healthy', 'Healthy with Therapy1', 'Healthy with Therapy2', ...

'Healthy with dual Therapy', 'Acute Infected', 'Latent Infected', ...

'Dead', 'Location' ,'NorthEast' );

saveas(gcf,strcat('Model3withAdherencePadh',num2str(P_adh*100),'Graph1.pdf'));



% The following lines of code are to display a graph of each state of

% cells during simulation

set(figure, 'OuterPosition', [200 100 700 500]) % sets figure window size

plot( 1:totalsteps , state8mean, 'g', ...

1:totalsteps , state9mean, 'b', ...

1:totalsteps , state7mean, 'k' , 'linewidth', 2 );

xlim([0 600]);

ylim([0 10000]);

hold on;

gridxy(20,'Color',[0.8 0.5 0.0],'linewidth',5) ;

errorbar( 1:15:totalsteps , state8mean(1:15:totalsteps), state8dev(1:15:totalsteps), 'g');

errorbar( 1:15:totalsteps , state9mean(1:15:totalsteps), state9dev(1:15:totalsteps), 'b');

errorbar( 1:15:totalsteps , state7mean(1:15:totalsteps), state7dev(1:15:totalsteps), 'k');

legend( 'Therapy start week', 'Healthy', 'Infected', 'Dead', ...

'Location' ,'NorthEast' );

saveas(gcf,strcat('Model3withAdherencePadh',num2str(P_adh*100),'Graph2.pdf'));


end

​
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 244.
  • 245.
  • 246.
  • 247.
  • 248.
  • 249.
  • 250.
  • 251.
  • 252.
  • 253.
  • 254.
  • 255.
  • 256.
  • 257.
  • 258.
  • 259.
  • 260.
  • 261.
  • 262.
  • 263.
  • 264.
  • 265.
  • 266.
  • 267.
  • 268.
  • 269.
  • 270.
  • 271.
  • 272.
  • 273.
  • 274.
  • 275.
  • 276.
  • 277.
  • 278.
  • 279.
  • 280.
  • 281.
  • 282.
  • 283.
  • 284.
  • 285.
  • 286.
  • 287.
  • 288.
  • 289.
  • 290.
  • 291.
  • 292.
  • 293.
  • 294.
  • 295.
  • 296.
  • 297.
  • 298.
  • 299.
  • 300.
  • 301.
  • 302.
  • 303.
  • 304.
  • 305.
  • 306.
  • 307.
  • 308.
  • 309.
  • 310.
  • 311.
  • 312.
  • 313.
  • 314.
  • 315.
  • 316.
  • 317.
  • 318.
  • 319.
  • 320.
  • 321.
  • 322.
  • 323.
  • 324.
  • 325.
  • 326.
  • 327.
  • 328.
  • 329.
  • 330.
  • 331.

【元胞自动机】基于元胞自动机模拟HIV传染matlab源码_源码

【元胞自动机】基于元胞自动机模拟HIV传染matlab源码_源码_02

​​​​​​​