【优化调度】杂交粒子群算法求解风光储微网日前优化调度问题【含Matlab源码 3872期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)

⛄一、杂交粒子群算法求解风光储微网日前优化调度问题简介

微网中包含:风电、光伏、储能、微型燃气轮机,以最小化电网购电成本、光伏风机的维护成本、蓄电池充放电维护成本、燃气轮机运行成本及污染气体治理成本为目标,综合考虑:功率平衡约束、燃气轮机爬坡约束、电网交换功率约束、储能装置约束、可控微电源出力约束等约束条件建立优化调度模型。
1.系统结构模型
1.1 光伏

光伏电池的空载电压与光谱辐照度有关,与电池面积无关。在100MW/cm2的太阳光谱辐照度下,单晶硅光伏电池的空载电压为450——600mV,最高可达690mV。当入射光谱辐照度变化时,光伏电池的空载电压与入射光谱辐照度的对数成正比。环境温度升高时,光伏电池的空载电压将下降,一般温度每升高1℃,Uoc约下降2——3mV。
由上述定义,可列出光伏电池等效电路中各变量的方程式如下:
在这里插入图片描述
在这里插入图片描述
式中,IO为光伏电池内部等效二极管PN结反向饱和电流,一般为常数;UD为等效二极管端电压;q为电子电荷;k为玻尔兹曼常量;T为热力学温度,A为PN结曲线常数。
光伏电池的伏安特性与光照强度和电池温度有关,可以认为光伏电池的数学物理模型方程以光照强度和电池温度作为参变量。以下是环境因素对光伏电池数学物理模型的修正。
当电池温度T、光照强度S不是参考光照强度和参考电池温度时,必须考虑它们的影响,并需要对光伏电池的数学物理模型进行修正。根据参考光照强度和参考电池温度下的Isc、Uoc、Im和Um,再将它们代入实用表达式,即可得到新的光照强度和新的电池温度下的伏安特性曲线。
在这里插入图片描述

1.2 风电
风力发电机的输出功率可以用下式表示:
式中:Pwt为风力发电机的输出功率,为空气密度,V为风速,R为风力发电机组的叶片半径,

Cp为风能利用系数。
风力发电机的出力和风速的关系为:
在这里插入图片描述
式中:Prated为额定功率;Vrated为额定风速,Vcutin为切入风速,Vcutout为切出风速

1.3 微型燃气轮机
选取燃氢微燃机作为氢电转换部分的能量耦合设备进行发电,该设备以氢⽓为燃料,燃烧产物只有水,实现零排放。

2 目标函数
目标函数为微网运行经济成本,主要包括:与主网交换功率成本,光伏、风机、蓄电池的维护成本,燃气轮机运行成本,污染气体治理成本,燃气轮机开机成本。

3 求解算法
采用PSO粒子群算法,用一种粒子来表示一个个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对应优化问题的一个候选解,粒子的飞行过程即为该个体的搜索过程.粒子的飞行速度可根据粒子历史最优位置和种群历史最优位置进行动态调整.粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子单独搜寻的最优解叫做个体极值,粒子群中最优的个体极值作为当前全局最优解。不断迭代,更新速度和位置。最终得到满足终止条件的最优解。
算法流程如下:
①初始化
首先,我们设置最大迭代次数,目标函数的自变量个数,粒子的最大速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒子群规模,每个粒子随机初始化一个速度。
②个体极值与全局最优解定义适应度函数,个体极值为每个粒子找到的最优解,从这些最优解找到一个全局值,叫做本次全局最优解。与历史全局最优比较,进行更新。
③更新粒子的速度和位置

④终止条件
(1)达到设定迭代次数;(2)代数之间的差值满足最小界限。
本文在PSO粒子群算法的基础上进行改进,首先将传统固定惯性权重系数更改为根据全局最优点自适应调整惯性权重系数,即权重根据粒子的位置不同而动态变化。

⛄二、部分源代码

clear all;
close all;
clc;
%% INPUTS
pso_flag = 1;
swarm_size = 80;
BATTpmax = 400000;%电池出力上限400kw
BATTpmin = -150000;%电池出力下限-150KW
PVpmax =100000;%光伏出力上限100KW
WTpmax =100000;%风机出力上限100KW
MTpmax = 50000;%燃气轮机出力上限50KW
MTpmin=5000;%不停机运行的出力下限5kw
Putilmax=150000;%与主网交换功率最大值150kW
%% INIALIZE TIME STEPS AND AC BUS(初始化时间步长以及交流母线)
stp = 3600;
pertime = 24;
totalTime = pertime1; % total hours simulation
totalUnits = 5;%总共五个单元
p_bus = zeros(totalUnits,totalTime);%规格:(5,24)
index_GenMT = 1;
index_GenPV = 2;
index_GenWT = 3;
index_GenBTR = 4;
index_Load = 5;
index_Util = 6;
zeros24(1:pertime) = 0.5;
%% MICROURBINE PARAMETERS FOR EMS (微型燃气轮机参数)
%pMTmax = 20
10^3;
cmt = 0.3571; % ( / m 3 ) f m t = 0.0085 ; d t = 1 ; k o c = 0.0587 ; /m^3) fmt = 0.0085; % (m^3/Wh) dt = 1; % time stp, the optimazation is updated every time stp (h)仿真步长为1h koc = 0.0587; % ( /m3)fmt=0.0085;dt=1;koc=0.0587;/Wh)Wh:瓦特小时
hot_startup = 30; %sec
cold_startup = 200; %sec
cooling_time = 520; %sec
mut = 600;% minimum up time (sec)
mdt = 300;% minimum down time (sec)
ton=0;% counting the times turned on
tonmin=2;
toff=0;% counting the times turned off
toffmin=2;
statusMT=ones(1,pertime);%先假设MT一直开机
Rup=75000;%爬坡上升速率限制 75kWh
Rdown=75000;%爬坡下降速率限制 75kWh

    %% WIND TURBINE PARAMETERS FOR EMS(风机参数)
Cwt = 0.0001;% $0.1/Wh
statusWT=ones(1,totalTime);
    %% BATTTERY PARAMETERS FOR EMS(蓄电池参数)
soc = zeros(1,totalTime);
soc(1,:) = 0.5; %initialize battery's sate of charge to 50%
statusBTR=ones(1,totalTime);
minchargpwr = 1000;%最小充电功率
maxchargpwr = 16000;%最大充电功率
effBTR = 0.9;%电池效率
    %% PV array PARAMETERS FOR EMS(光伏系统参数)
Cpv = 0.2;% $0.2/kWh
    %% LOAD PARAMETERS FOR EMS(负载侧参数)
powerDemandmin = 150*10^3;%负载需求最小值
powerDemandmax = 300*10^3;%负载需求最大值
   %% UTILITY
cutil = 1.05;
counterDisp=0;
util = zeros(1,totalTime);
stp_time =0;
irrad = zeros(totalTime);
tempr = zeros(totalTime);
vwind = zeros(totalTime);
p_min=zeros(3,pertime);
gb_mt=zeros(1,pertime);
gb_batt=zeros(1,pertime);
gb_util=zeros(1,pertime);
irrad=[0 0 0 0 0 0 0 0.2 0.3 0.4 0.6 0.8 0.8 0.8 0.8 0.7 0.6 0.4 0.3 0.1 0 0 0 0];%定义光照强度
tempr=[10 10 9 9 8 9 10 12 15 18 20 22 25 25 25 25 24 21 18 16 14 12 11 10];%定义温度
%vwind=[10 10 11 11 10 9 8 8 7 9 10 10 8 7 7 8 9 9 9 10 11 10 9 8];%定义风速,3-13
vwind=[10,11,12,12,12,12,12,13,15,16,17,17,18,19,19,20,21,22,23,24,25,26,27,28];%每小时的风速


 for i=1:totalTime
    %% LOAD DEMAND
    stp_time=stp_time+1;

    if(stp_time<=pertime)% stp_time<=24,分时负荷需求赋值
        if (stp_time==1 || stp_time==8 || stp_time==9 || stp_time==16 || stp_time==17 || stp_time==24||stp_time==23||stp_time==22)
            p_bus(index_Load,i) = 30000;
        elseif (stp_time==11 || stp_time==12 || stp_time==15 ||stp_time==19)
            p_bus(index_Load,i) = 60000;
        elseif (stp_time==10||stp_time==18)
            p_bus(index_Load,i) = 90000;
        elseif (stp_time==21)
            p_bus(index_Load,i) = 220000;
        elseif (stp_time==14 || stp_time==20)
            p_bus(index_Load,i) = 180000;
        elseif (stp_time==13)
            p_bus(index_Load,i) = 280000;
        else
            p_bus(index_Load,i) = 8000;
        end
    else %当运行时间大于24h
          if (mod(stp_time,pertime)==1 || mod(stp_time,pertime)==8 || mod(stp_time,pertime)==9 || mod(stp_time,pertime)==16 || mod(stp_time,pertime)==17 || mod(stp_time,pertime)==24)
            p_bus(index_Load,i) = 30000;
        elseif (mod(stp_time,pertime)==11 || mod(stp_time,pertime)==12 || mod(stp_time,pertime)==15 || mod(stp_time,pertime)==18 || mod(stp_time,pertime)==19 || mod(stp_time,pertime)==23)
            p_bus(index_Load,i) = 60000;
        elseif (mod(stp_time,pertime)==10)
            p_bus(index_Load,i) = 90000;
        elseif (mod(stp_time,pertime)==21 || mod(stp_time,pertime)==22)
            p_bus(index_Load,i) = 150000;
        elseif (mod(stp_time,pertime)==14 || mod(stp_time,pertime)==20)
            p_bus(index_Load,i) = 210000;
        elseif (mod(stp_time,pertime)==13)
            p_bus(index_Load,i) = 300000;
        else
            p_bus(index_Load,i) = 3000;
        end
    end
          %% CONSTRAINTS MT(微型燃气轮机的约束)***
   % if( ton >= mut/stp )%600/3600,将单位由s转换为h;MT打开时间大于上升时间约束
    %      statusMT(i) = 0;%标志MT关闭
    %  end

   %   if( toff >= mdt/stp )%MT关闭时间大于下降时间约束
   %       statusMT(i) = 1;%标志MT打开
   %   end

    %  if( statusMT(i) == 0 )
      %    ton=0;%开启时间记为0
     %     toff=toff+1;%关闭时间增加
      %    if(i<length(statusMT))
     %         statusMT(i+1)=0;
     %     end
    %  else
     %     toff = 0;
     %     ton = ton+1;
     %     if(i<length(statusMT))
      %        statusMT(i+1)=1;%当时间小于24h,标记下一个小时MT的状态为打开,顺延上一时刻的MT的状态
      %    end
     % end
            %% POWER GENERATORS (RES) 发出电能

% irrad(i) = 0.4;
% tempr(i) = 25 ;
% vwind(i) = 23;
% irrad(i) = rand();%当前光照强度,随机选取0-1
% tempr(i) = 25 + (75-25).rand();%当前温度**
% vwind(i) = 10 + (28-10).*rand();%当前风速
p_bus(index_GenWT,i) = windturbine(vwind(i),statusWT(i),WTpmax);%P_bus第三行记录风机各个小时的发电量
%if(mod(stp_time,pertime)<=19 && mod(stp_time,pertime)>=7)%一天中的7:00到19:00光伏出力
% p_bus(index_GenPV,i) = pv_array(irrad(i),tempr(i),PVpmax);%Pbus第二行记录光伏出力
%end
p_bus(index_GenPV,i) = pv_array(irrad(i),tempr(i),PVpmax);%Pbus第二行记录光伏出力

     if(mod(stp_time,pertime)==0)%到达第24h
        if(pso_flag==1)
            soc_tmp=soc;
            %% INITIALIZE POPULATION
            [ DV, putil, soc_ ,status_] = init_swarms(p_bus(index_GenWT,i-pertime+1:i),p_bus(index_GenPV,i-pertime+1:i),p_bus(index_Load,i-pertime+1:i),soc(i-pertime+1:i),statusMT(i-pertime+1:i), BATTpmax, BATTpmin, MTpmax,MTpmin,Putilmax,swarm_size);%初始化种群,因为此时i是24的整数倍,故输入参数是p_bus每行的第1到24列。
            %输出DV:蓄电池出力、燃气轮机出力;putil与电网交换功率;蓄电池soc值

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值