R语言实战之如何对数据进行缺失值处理

本文介绍了在R语言中处理数据缺失值的方法,提供详尽的基础代码示例,适用于初学者掌握数据预处理技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言实战之如何对数据进行缺失值处理

以下是对于数据中含有部分缺失值的处理方式,代码十分详尽基础:

下面展示一些 基础代码

manager <- c(1,2,3,4,5)
date <- c("10/24/08","10/28/08","10/1/08","10/12/08","5/1/09")
country <- c("US","US","UK","UK","UK")
gender <- c("M","F","F","M","F")
age <- c(32,45,25,39,99)
q1 <- c(5,3,3,3,2)
q2 <- c(4,5,5,3,2)
q3 <- c(5,2,5,4,1)
q4 <- c(5,5,5,NA,2)
q5 <- c(5,5,2,NA,1)
leadership <- data.frame(manager, date, country, gender, age,
                         q1,q2,q3,q4,q5,stringsAsFactors = FALSE)
#stringsAsFactors = FALSE遇到字符型的数值的时候,不将其转换成变量
leadership

leadership$age[leadership$age == 99] <- NA
#将99岁的数据列为缺失值
leadership <- within(leadership,{
  agecat <- NA
  agecat[age > 75] <- "elder"
  agecat[age >= 55 & age <=75] <- "Middle Aged"
  agecat[age < 55] <- "Young"})

leadership

library("plyr")
#fix(leadership)
#打开数据编辑器进行修改,当然也可直接修改,示例如下:
leadership <- rename(leadership, c(manager = "Manager ID", date = "Testdate"))
names(leadership)[6:10] <- c("item1","item2","item3","item4","item5")
leadership
is.na(leadership)
#检测是否有缺失值

x <- c(1,2,NA,3)
y <- sum(x,na.rm = "true")
y
#na.rm移除缺失的值为真
#na.omit忽略缺失值
leadership
newdata <- na.omit(leadership)
newdata

> manager <- c(1,2,3,4,5)
> date <- c("10/24/08","10/28/08","10/1/08","10/12/08","5/1/09")
> country <- c("US","US","UK","UK","UK")
> gender <- c("M","F","F","M","F")
> age <- c(32,45,25,39,99)
> q1 <- c(5,3,3,3,2)
> q2 <- c(4,5,5,3,2)
> q3 <- c(5,2,5,4,1)
> q4 <- <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值