P1004 [NOIP2000 提高组] 方格取数
题目
展开
题目描述
设有 N×N 的方格图 (N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 0。如下图所示(见样例):

某人从图的左上角的 A 点出发,可以向下行走,也可以向右走,直到到达右下角的 B 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 0)。
此人从 A 点到 B 点共走两次,试找出 2 条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数 N(表示 N×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 0 表示输入结束。
输出格式
只需输出一个整数,表示 2 条路径上取得的最大的和。
输入输出样例
输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出
67
思路
走两次可以看成两个人同时走,这就是一道很常规的多维数组动态规划问题。只要注意如果两个人走到一起的时候只算一次就可以了。
代码
// A code block
#include <iostream>
#include <algorithm>
using namespace std;
int mapp[10][10]={0};
int f[10][10][10][10];
int n;
int main()
{
cin>>n;
int i,a,b,c,j,k,l;
while(a!=0||b!=0||c!=0)
{
cin>>a>>b>>c;
mapp[a][b]=c;
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
for(k=1;k<=n;k++)
{
for(l=1;l<=n;l++)
{
f[i][j][k][l]=max(max(f[i-1][j][k-1][l],f[i-1][j][k][l-1]),max(f[i][j-1][k-1][l],f[i][j-1][k][l-1]))+mapp[i][j]+mapp[k][l];
if(i==k&&l==j)
f[i][j][k][l]-=mapp[i][j];
}
}
}
}
cout<<f[n][n][n][n];
return 0;
}
该博客讨论了P1004 NOIP2000提高组的方格取数问题。博主提供了一个8x8的方格图例子,并说明了问题要求找到两条路径,使取到的数字和最大。输入输出格式和样例数据被给出。解决方案是通过多维数组动态规划,确保当两人相遇时,数字仅计算一次。
1152

被折叠的 条评论
为什么被折叠?



