Too few periods for decompose() [closed]
Your time series, however you created it, has no seasonal cycles or less than 2 seasonal cycles. (This may not indicate that the data are not seasonal; possibly you created samplets
incorrectly.)
1.white.test
white.test(x, lag = 1, qstar = 2, q = 10, range = 4, type = c("Chisq","F"), scale = TRUE, …)
2.seasons explainations
https://www.spscommerce.com/blog/shopping-seasons-consumer-spsa/
3.自相关和偏自相关
参考 https://blog.youkuaiyun.com/yujunbeta/article/details/8091411
偏自相关就是在试图解释在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。PACF
ACF starts at lag 0 and PACF starts at lag 1.
4. AR 和 MA 拖尾性和结尾性
AR(2)模型的偏自相关函数是截尾的(但由于这个是数据,所以出现pacf只能看出趋势,而不是在2步后直接变为0)
R 模型实现 MA《
https://zhuanlan.zhihu.com/p/26310640
5. Applied timeSeries 教程, 滨州大学
https://onlinecourses.science.psu.edu/stat510/node/62/
6 with seasonal
https://stats.stackexchange.com/questions/223316/modelling-moving-holiday-effects-in-forecasting
use dummy variables for the holiday
论文
https://www.census.gov/srd/papers/pdf/RRS2018-01.pdf
ARMA 实现 ,并上 holiday
https://stackoverflow.com/questions/46873899/weekly-forecasts-with-holidays
7. 教科书式说明
8. nonstationary time series
adf.test()
9.