Linux内核2.6和2.4中内核堆栈的比较

本文详细对比了Linux内核2.4和2.6版本中进程内核堆栈和task描述符的存储方式,包括它们的定义、内存分配及获取当前进程描述符的方法。

本文转自http://feizf.blogbus.com/logs/16835565.html

Linux内核 2.42.6的进程内核堆栈和task描述符存储不太一样,这儿总结一下。

在内核2.4
中堆栈是这么定义的:
union task_union {
        struct task_struct task;
         unsigned long stack[INIT_TASK_SIZE/sizeof(long)];
    };
INIT_TASK_SIZE只能是8K

内核为每个进程分配一个task_struct结构时,实际上分配两个连续的物理页面(8192字节),如图所示。底部用作task_struct结构(大小约为1K字节),结构的上面用作内核堆栈(大小约为7K字节)访问进程自身的task_struct结构,使用宏操作current, 2.4中定义如下:

#define current get_current()
static inline struct task_struct * get_current(void)
{
      struct task_struct *current;
      __asm__("andl %%esp,%0; ":"=r" (current) : "" (~8191UL));
      return current;
}
   ~8191UL表示最低13位为0, 其余位全为1 %esp指向内核堆栈中,当屏蔽掉%esp的最低13后,就得到这个两个连续的物理页面的开头,而这个开头正好是task_struct的开始,从而得到了指向task_struct的指针。


在内核2.6中堆栈这么定义:
union thread_union {
      struct thread_info thread_info;
      unsigned long stack[THREAD_SIZE/sizeof(long)];
};
根据内核的配置,THREAD_SIZE既可以是4K字节(1个页面)也可以是8K字节(2个页面)thread_info52个字节长。

下图是当设为
8KB时候的内核堆栈:Thread_info在这个内存区的开始处,内核堆栈从末端向下增长。进程描述符不是在这个内存区中,而分别通过taskthread_info指针使thread_info与进程描述符互联。所以获得当前进程描述符的current定义如下
:

#define current get_current()
static inline struct task_struct * get_current(void)
{
      return current_thread_info()->task;
}

static inline struct thread_info *current_thread_info(void)
{
       struct thread_info *ti;
       __asm__("andl %%esp,%0; ":"=r" (ti) : "" (~(THREAD_SIZE - 1)));
       return ti;
}


    根据THREAD_SIZE大小,分别屏蔽掉内核栈的12-bit LSB(4K)13-bit LSB(8K),从而获得内核栈的起始位置。

struct thread_info {
      struct task_struct    *task;       /* main task structure */
      struct exec_domain    *exec_domain; /* execution domain */
      unsigned long           flags;       /* low level flags */
      unsigned long           status;       /* thread-synchronous flags */
      ... ..
}


本PDF电子书包含上下两册,共1576页,带目录,高清非扫描版本。 作者: 毛德操 胡希明 丛书名: Linux内核源代码情景分析 出版社:浙江大学出版社 目录 第1章 预备知识 1.1 Linux内核简介. 1.2 Intel X86 CPU系列的寻址方式 1.3 i386的页式内存管理机制 1.4 Linux内核源代码中的C语言代码 1.5 Linux内核源代码中的汇编语言代码 第2存储管理 2.1 Linux内存管理的基本框架 2.2 地址映射的全过程 2.3 几个重要的数据结构函数 2.4 越界访问 2.5 用户堆栈的扩展 2.6 物理页面的使用周转 2.7 物理页面的分配 2.8 页面的定期换出 2.9 页面的换入 2.10 内核缓冲区的管理 2.11 外部设备存储空间的地址映射 2.12 系统调用brk() 2.13 系统调用mmap() 第3章 中断、异常系统调用 3.1 X86 CPU对中断的硬件支持 3.2 中断向量表IDT的初始化 3.3 中断请求队列的初始化 3.4 中断的响应服务 3.5 软中断与Bottom Half 3.6 页面异常的进入返回 3.7 时钟中断 3.8 系统调用 3.9 系统调用号与跳转表 第4章 进程与进程调度 4.1 进程四要素 4.2 进程三部曲:创建、执行与消亡 4.3 系统调用fork()、vfork()与clone() 4.4 系统调用execve() 4.5 系统调用exit()与wait4() 4.6 进程的调度与切换 4.7 强制性调度 4.8 系统调用nanosleep()pause() 4.9 内核中的互斥操作 第5章 文件系统 5.1 概述 5.2 从路径名到目标节点 5.3 访问权限与文件安全性 5.4 文件系统的安装拆卸 5.5 文件的打开与关闭 5.6 文件的写与读 5.7 其他文件操作 5.8 特殊文件系统/proc 第6章 传统的Unix进程间通信 6.1 概述 6.2 管道系统调用pipe() 6.3 命名管道 6.4 信号 6.5 系统调用ptrace()进程跟踪 6.6 报文传递 6.7 共享内存 6.8 信号量 第7章基于socket的进程间通信 7.1系统调用socket() 7.2函数sys—socket()——创建插口 7.3函数sys—bind()——指定插口地址 7.4函数sys—listen()——设定server插口 7.5函数sys—accept()——接受连接请求 7.6函数sys—connect()——请求连接 7.7报文的接收与发送 7.8插口的关闭 7.9其他 第8章设备驱动 8.1概述 8.2系统调用mknod() 8.3可安装模块 8.4PCI总线 8.5块设备的驱动 8.6字符设备驱动概述 8.7终端设备与汉字信息处理 8.8控制台的驱动 8.9通用串行外部总线USB 8.10系统调用select()以及异步输入/输出 8.11设备文件系统devfs 第9章多处理器SMP系统结构 9.1概述 9.2SMP结构中的互斥问题 9.3高速缓存与内存的一致性 9.4SMP结构中的中断机制 9.5SMP结构中的进程调度 9.6SMP系统的引导 第10章系统引导初始化 10.1系统引导过程概述 10.2系统初始化(第一阶段) 10.3系统初始化(第二阶段) 10.4系统初始化(第三阶段) 10.5系统的关闭重引导
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值