【状压DP】【cofun1372】售货员难题

本文介绍了一个经典的旅行售货员问题(TSP)的简化版本,通过使用状态压缩动态规划(状压DP)的方法解决该问题。具体地,针对小规模数据集(n<=14),采用二进制数来表示访问过的村庄状态,通过动态规划求解最优路径。

【cofun1372】售货员难题

Description
某乡有n个村庄(1<=n<=14),有一个售货员,他要到各个村庄去售货,各村庄之间的路程s(0< s<1000)是已知的,且A村到B村与B村到A村的路程大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在地,假设商店所在的村庄为1,他不知道选择什么样的路线才能使所走的路程之和最短。请你帮他选择一条最短的路。

Input Format
村庄数n和各村之间的路程(均是正整数)。
Output Format
最短的路程

Sample Input
4 {村庄数}
0 30 6 4 {村庄1到各村的路程}
30 0 5 10 {村庄2到各村的路程}
6 5 0 20 {村庄3到各村的路程}
4 10 20 0 {村庄4到各村的路程}
Sample Output
25


  • 分析:
    • n <= 14
      一般来说 情况 <= 20 都要考虑一下状压DP。
      用二进制存储村庄(0: 没去过/ 1: 去过)。
    • 转移方程:
f[i | (1 << k)][k] = min(f[i | (1 << k)][k], f[i][j] + dist[j][k]);

f[i][j] : 状态为i,最后走到 j 村庄的最短路程;
dist[j][k] : j和k之间的路程

【算得上状压裸题。。吧XDD


  • 代码:
#include <bits/stdc++.h>
 using namespace std;

 int n, i, j, k, dist[15][15], f[1 << 16][16]; 

 int main()
 {

    scanf("%d", &n);
    for(i = 0; i < n; i ++)
        for(j = 0; j < n; j ++)
            scanf("%d", &dist[i][j]);
    //读入        
    memset(f, 0x3f, sizeof(f));
    for(i = 0; i < n; i ++)
        f[1 << i][i] = dist[0][i];
    //初始化    
    for(i = 1; i < 1 << n; i ++)
        for(j = 0; j < n; j ++)
        if (i & (1 << j))
            for(k = 0; k < n; k ++)
            if (! (i & (1 << k)))
                f[i | (1 << k)][k] = min(f[i | (1 << k)][k], f[i][j] + dist[j][k]);
    //状态转移      
    printf("%d", f[(1 << n) - 1][0]);
    //输出答案 
    return 0;

 }

  • n更大的数据/应该/是用搜索+剪枝QAQ
基础篇 1、 算法有哪些特点?它有哪些特征?它和程序的主要区别是什么? 2、 算法的时间复杂度指的是什么?如何表示? 3、 算法的空间复杂度指的是什么?如何表示? 4、 什么是最坏时间复杂性?什么是最好时间复杂性? 5、 什么是递归算法?什么是递归函数? 6、 分治法的设计思想是什么? 7、 动态规划基本步骤是什么? 8、 回溯法与分枝限界法之间的相同点是什么?不同之处在哪些方面? 9、 分枝限界法的基本思想是什么? 10、 限界函数的功能是什么? 11、 设某一函数定义如下: 编写一个递归函数计算给定x的M(x)的值。 12、 已知一个顺序表中的元素按元素值非递减有序排列,编写一个函数删除表中多余的值相同的元素。 13、 分别写出求二叉树结点总数及叶子总数的算法。 分治术 14、 有金币15枚,已知其中有一枚是假的,而且它的重量比真币轻。要求用一个天平将假的金币找出来,试设计一种算法(方案),使在最坏情况下用天平的次数最少。 15、 利用分治策略,在n个不同元素中找出第k个最小元素。 16、 设有n个运动员要进行网球循环赛。设计一个满足以下要求的比赛日程表。 (1)每个选手必须与其它n-1选手各赛一次; (2)每个选手一天只能赛一次。 17、 已知序列{503,87,512,61,908,170,897,275,652,462},写一个自底向上的归并分类算法对该序列作升序排序,写出算法中每一次归并执行的结果。 贪心法 18、 设有n个文件f1,f2,…,fn要求存放在一个磁盘上,每个文件占磁盘上1个磁道。这n个文件的检索概率分别是p1,p2,…,pn,且 =1。磁头从当前磁道移到被检索信息磁道所需的时间可用这两个磁道之间的径向距离来度量。如果文件fi存放在第i道上,1≤i≤n则检索这n个文件的期望时间是 。其中d(i,j)是第i道与第j道之间的径向距离。磁盘文件的最优存储问题要求确定这n个文件在磁盘上的存储位置,使期望检索时间达到最小。试设计一个解此问题的算法,并分析算法的正确性与计算复杂性。 19、 设有n个正整数,编写一个算法将他们连接成一排,组成一个最大的多位整数。用贪心法求解本题。 20、 键盘输入一个高精度的正整数N(此整数中没有‘0’),掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小(输出应包括所掉的数字的位置和组成的新的正整数,N不超过240位)。 21、 对于下图给出的有向网,写出用Dijkstra方法求从顶点A到图中其它顶点的最短径的算法,并写出执行算法过程中顶点的求解次序及从顶点A到各顶点径的长度。 22、 对于上图给出的有向图,写出最小成本生成树,给出求解算法。 动态规划 23、 求出上图中每对结点间的最短距离的算法,并给出计算结果。 24、 下图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道,连线上的数值代表道的长度。现在,想从城市A到达城市E,怎样走程最短,最短程的长度是多少? 25、 已知序列a1,a2,…,an,试设计一算法,从中找出一子序列 ai1 < ai2 < … E。试用动态规划的最优化原理求出A->E的最省费用。 29、 已知如下图,写出用动态规划求最短径的递推关系式,并写出求从源点A0到终点A3 的最短径过程。给出求解算法。 6 A1 A2 5 5 2 A0 A3 3 4 4 B1 B2 5 搜索与遍历问题 30、 已知有向图G=,试设计一算法以判断对于任意两点u和v,是否存在一条从u到v的径,并分析其复杂度。 31、 对于给定的一个二叉树T(如下图) a) 设计一个算法,统计二叉树中结点总数; b) 设计一个算法,求二叉树最大宽度及最大宽度所在深度。 32、 判近亲问题。给定一个家族族谱,为简化问题起见,假设家族中的夫妻关系只表示男性成员。设用线性表存储家族成员,用成员的父指针指向其生父。编写一个在此种族谱表示方式下的算法,判断给定的二个家族成员是否是五代内的近亲。(提示:家族成员的表示方式应与搜索方式相适应。) 33、 完全二叉树定义为:深度为K,具有N个结点的二叉树的每个结点都与深度为K的满二叉树中编号从1至N的结点一一对应。(1)写一个建立二叉树的算法。(2)写一个判别给定的二叉树是否是完全二叉树的算法。 34、 编写计算整个二叉树高度的算法(二叉树的高度也叫二叉树的深度)。 35、 编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。 回溯法 36、 (组合问题)求出从自然数1,2,…,n中任取r个数的所有组合。 37、 传教士与野人渡河问题。有M个传教士和M个野人准备渡河,船一次最多载2人,任何时刻野人数不能多于传教士数,但允许全部为野人。编写算法给出合理的渡河计划。 38、 某有n个村庄,有一个售货员,他要到各个村庄售货,各村庄之间程s是已知的,且A村到B村与B村到A村的大多不同。为了提高效率,他从商店出发到每个村庄一次,然后返回商店所在的村,假设商店所在的村庄1。试设计一个算法,帮他选择一条最短的。 39、 设某一机器由n个部件组成,每一种部件都可以从m个不同的供应商处购得。设wi,j是从供应商j处购得的部件i的重量,ci,j是相应的价格。试设计一个算法,给出总价格不超过c的最小重量机器设计。 40、 设有n件工作分配给n个人。为第i个人分配工作j所需的费用为ci,j 。试设计一个算法,计算最佳工作分配方案,为每一个人都分配1 件不同的工作,并使总费用达到最小。 41、 编写程序求解骑士巡游问题:在n行n列的棋盘上(如n=8),假设一位骑士(按象棋中“马走日”的行走法)从初始坐标位置(x1,y1)出发,要遍访(巡游)棋盘中的每一个位置一次。请编一个程序,为骑士求解巡游“线图”(或告诉骑士,从某位置出发时,无法遍访整个棋盘 — 问题无解骑士巡游)。
<think>我们首先需要理解用户的需求:用户希望了解状态压缩动态规划(DP)的详细原理和应用。根据引用资料,我们可以总结出DP的核心思想、适用条件以及基本实现方法。 ### 状态压缩动态规划(DP)详解 状态压缩动态规划是一种通过将态信息缩(通常使用二进制)来表示动态规划态的方法,适用于态中每个元素只有两种可能(如存在/不存在、选中/未选中)且态规模较小(通常不超过32个元素)的问题。 #### 1. 适用条件 - **态单元简单**:每个态单元只有两种态(例如0/1)。 - **态规模小**:态单元的数量不能太大(通常不超过32,因为一个32位整数可以表示32个态单元)。 - **需要态**:如果不缩,态数量会非常大(例如$2^n$级别),导致无法存储。 #### 2. 基本原理 DP的核心在于用一个整数的二进制位来表示一个集合。例如,一个长度为$n$的二进制数,每一位(0或1)表示某个元素的态(如是否被选中)。这样,一个整数就代表了一个集合。 例如,有5个元素,用5位二进制数表示: - 二进制数`10101`(十进制21)表示第0、2、4个元素被选中(从右向左,最低位为第0位)。 - 这样,我们就可以用一个整数(如21)来代表一个集合。 #### 3. 位运算基础 DP中常用的位运算操作: - **左移(<<)**:`1 << i` 表示将1左移i位,得到第i位为1,其余为0的数。常用于构造某个态。 - **与(&)**:判断某一位是否为1,例如`state & (1<<i)`,如果结果非0,则第i位为1。 - **或(|)**:将某一位设为1,例如`state | (1<<i)`。 - **异或(^)**:将某一位取反,例如`state ^ (1<<i)`。 - **取反(~)**:将每一位取反,例如`~state`(注意整数位数,避免高位干扰)。 #### 4. DP的步骤 DP的解题步骤与普通DP类似,但态表示使用了缩的整数: 1. **定义态**:通常用$dp[i][state]$表示处理到第$i$个阶段(或位置)且当前态为$state$(一个缩的整数)时的最优解(或方案数)。 2. **态转移**:根据问题的规则,从之前的态转移到当前态。通常需要枚举所有可能的前一个态,检查是否满足转移条件。 3. **初始化**:确定初始态(如$dp[0][0]=0$)。 4. **结果提取**:根据最终态(如$dp[n][final\_state]$)得到答案。 #### 5. 经典问题举例:旅行商问题(TSP) 问题描述:有$n$个城市,旅行商从起点0出发,访问每个城市恰好一次后回到起点,求最短径。 - **态表示**:$dp[state][i]$表示已经访问过的城市集合为$state$,当前位于城市$i$的最短径长度。 - **态转移**:$dp[state][i] = \min\{ dp[state \setminus \{i\}][j] + dist[j][i] \}$,其中$j$是上一个访问的城市,且$j$在$state$中,$state \setminus \{i\}$表示从集合$state$中移除城市$i$(即态中第$i$位置0)。 - **状态压缩**:$state$是一个$n$位的二进制数,第$k$位为1表示城市$k$已经访问过。 #### 6. 代码示例(TSP问题) ```python def tsp(dist): n = len(dist) # 态总数:2^n total_states = 1 << n # 初始化dp数组:dp[state][i]表示在态state下,当前在i城市的最短dp = [[float('inf')] * n for _ in range(total_states)] # 起点:1<<0表示只包含0号城市,当前在0城市,径长度为0 dp[1][0] = 0 # 遍历所有态 for state in range(total_states): # 遍历当前态下的每个城市 for i in range(n): # 如果当前态中不包含i,跳过 if not (state & (1 << i)): continue # 尝试从其他城市j转移到i for j in range(n): # 如果态中包含j,且j不是i,则尝试转移 if i != j and (state & (1 << j)): # 从态state中移除i,得到前一个态prev_state prev_state = state ^ (1 << i) # 更新dp[state][i] dp[state][i] = min(dp[state][i], dp[prev_state][j] + dist[j][i]) # 最终态:所有城市都访问过(全1),并且回到起点0 res = float('inf') for i in range(1, n): # 最后一步从i回到0 res = min(res, dp[total_states-1][i] + dist[i][0]) return res ``` #### 7. 优化与技巧 - **滚动数组**:当态转移只依赖前一阶段时,可优化空间。 - **预处理合法态**:对于某些问题,可以先预处理出所有合法态(如不冲突的态),减少枚举量。 - **剪枝**:在态转移过程中,通过条件判断提前终止无效转移。 #### 8. 应用场景 DP常用于组合优化问题,如: - 旅行商问题(TSP) - 铺砖问题(用1x2砖块铺满网格) - 任务分配问题(每个任务分配给不同的人,每人只能做一个) - 棋盘覆盖问题(如炮兵布阵) ### 总结 状态压缩动态规划通过将状态压缩为整数,有效解决了态空间过大问题。其核心在于位运算的应用和态转移的设计。掌握DP需要熟悉位运算操作,并能够将问题态抽象为二进制表示。 §§相关问题§§ 1. DP中常用的位运算操作有哪些? 2. 如何判断一个态是否包含某个元素? 3. 旅行商问题(TSP)的态转移方程是什么? 4. DP适用于哪些类型的问题? 5. 在状态压缩中,如何表示一个集合的并集、交集和差集?</think>### 状态压缩动态规划(DP)详解 #### 一、核心概念 DP是一种将**集合状态压缩为整数**的动态规划技术。它适用于态中的每个元素只有两种可能(如存在/不存在、选中/未选中),且态规模较小(通常不超过32个元素)的问题。核心思想是将一个集合映射为一个整数的二进制位: - **二进制表示**:用整数的二进制位表示集合元素态 例如:集合 $\{A,C\}$ 在3元素系统中可表示为二进制 `101`(十进制5) - **状态压缩**:将多维状态压缩为单整数 态 $dp[i][S]$ → $dp[S]$,其中 $S$ 是缩后的整数态 #### 二、适用条件(引用[3]) 1. **态单元二元化**:每个态单元仅需两种态(0/1) 2. **态规模小**:态单元数 $n \leq 32$(int存储上限) 3. **态可缩**:态数据能映射为二进制整数 4. **态依赖复杂**:多个元素态共同影响决策(引用[2]) #### 三、位运算基础(关键操作) | 操作 | 符号 | 示例(二进制) | 作用 | |---------------|------|----------------------------|--------------------------| | 判断元素存在 | `&` | `state & (1<<i)` | 检查第 $i$ 位是否为1 | | 添加元素 | `\|` | `state \| (1<<i)` | 将第 $i$ 位置1 | | 删除元素 | `&~` | `state & ~(1<<i)` | 将第 $i$ 位置0 | | 切换元素态 | `^` | `state ^ (1<<i)` | 翻转第 $i$ 位 | | 枚举子集 | `&` | `sub = (sub-1) & state` | 遍历态的所有子集 | #### 四、算法步骤(以经典问题为例) **问题:旅行商问题(TSP)** 求访问所有城市(每个城市仅一次)并返回起点的最短1. **态定义** $dp[state][i]$:当前已访问城市集合为 $state$(缩整数),最后位于城市 $i$ 的最短径 2. **态转移** $$ dp[state][i] = \min_{j \in state} \{ dp[state \setminus \{i\}][j] + dist[j][i] \} $$ 其中 $state \setminus \{i\}$ 用位运算实现:`state ^ (1<<i)` 3. **初始化** - 起点:$dp[1<<0][0] = 0$(从城市0出发) - 其他态初始化为无穷大 4. **结果提取** $$ \min_{i} \{ dp[full\_state][i] + dist[i][0] \} $$ $full\_state = (1<<n)-1$(所有城市已访问) #### 五、代码实现(TSP问题) ```python def tsp(dist): n = len(dist) total_states = 1 << n # 态总数 2^n dp = [[float('inf')] * n for _ in range(total_states)] # 初始化:从0号城市出发 dp[1 << 0][0] = 0 for state in range(total_states): for i in range(n): if not (state & (1 << i)): # 跳过未访问城市 continue for j in range(n): if state & (1 << j): # j必须在已访问集合中 prev_state = state ^ (1 << i) # 移除当前城市 dp[state][i] = min(dp[state][i], dp[prev_state][j] + dist[j][i]) # 返回最终结果(回到起点0) full_state = (1 << n) - 1 return min(dp[full_state][i] + dist[i][0] for i in range(n)) ``` #### 六、典型应用场景 1. **棋盘覆盖问题** - 如炮兵布阵(引用[4]):每个位置放/不放炮兵 → 二进制位表示 - 约束:同行炮兵间距≥2 → 位运算检查 `state & (state>>1)` 或 `state & (state>>2)` 2. **子集选择问题** - 如背包变种:选择物品组合满足特定条件 - 态:$dp[mask]$ 表示选中物品集合为 $mask$ 的最优解 3. **径覆盖问题** - 如最小权径覆盖:用二进制表示已覆盖节点 #### 七、优化技巧 1. **滚动数组**:空间优化(如 $dp[state]$ 只依赖 $dp[state']$) 2. **预处理合法态**:提前计算满足约束的态集合 3. **剪枝**:跳过无效态(如 `state` 中不包含必要元素时) #### 八、复杂度分析 - **时间复杂度**:$O(2^n \times n^2)$(TSP为例) - **空间复杂度**:$O(2^n \times n)$ 当 $n>20$ 时需谨慎使用(引用[3]) > 状态压缩DP通过将高维状态压缩为整数,显著降低了态空间维度,是解决小规模组合优化问题的利器(引用[1][2])。其核心在于**用位运算实现集合操作**,将复杂的集合关系转化为整数运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值