【机器学习】使用Stable Diffusion实现潜在空间搜索

1、引言

1.1 潜在空间的概念

潜在空间(Latent Space)是在机器学习和深度学习中一个重要的概念,它指的是用于表示数据的一种低维空间。这个空间编码了数据中包含的所有有用信息的压缩表示,通常比原始数据空间的维数更低,从而使其更容易进行分析和理解。

1.1.1 潜在空间的定义与生成

潜在空间可以被视为数据的一种抽象表示,它捕捉了数据的内在结构和特征。这种空间可以通过各种方法生成,如主成分分析(PCA)和深度神经网络(DNN)等。PCA是一种线性降维方法,它通过寻找原始数据的线性组合来生成潜在空间。而DNN则是一种非线性降维方法,它通过学习数据中的非线性关系来生成潜在空间。

1.1.2 潜在空间的应用

潜在空间在多个领域有着广泛的应用。首先,它可以用于数据压缩,将数据压缩到更小的空间,从而节省存储空间和计算资源。其次,潜在空间也可以用于数据可视化,帮助人们理解数据中隐藏的模式和趋势。此外,在数据挖掘和机器学习中,潜在空间也发挥着重要作用,用于发现数据中隐藏的知识和提高模型的性能。

1.1.3 潜在空间的特性

潜在空间具有一些独特的特性。首先,它是低维的,这使得数据更易于处理和分析。其次,潜在空间中的点或向量通常代表原始数据空间中的不同实例或特征,因此可以通过操作这些点或向量来影响原始数据。最后,潜在空间中的结构和关系往往反映了原始数据的内在属性和规律。

潜在空间是机器学习和深度学习中一个重要的概念,它通过将数据压缩到低维空间来捕捉数据的内在结构和特征。潜在空间具有广泛的应用,包括数据压缩、数据可视化、数据挖掘和机器学习等。通过探索和利用潜在空间,我们可以更好地理解数据、发现数据中隐藏的知识并提高模型的性能。

1.2 潜在空间搜索

1.2.1 定义

潜在空间搜索(Latent Space Search)的概念主要围绕在深度学习和机器学习中对潜在空间(Latent Space)的利用和查询。潜在空间是机器学习中的一个低维空间,它编码了数据的潜在特征,用于简化数据特征的表达,以便发现某种规律模式。潜在空间搜索指的是在这个低维空间中寻找与特定查询或目标相关的点或区域的过程。

1.2.2 方法

潜在空间搜索可以采用多种方法,包括但不限于偏最小二乘(PLS)、潜在空间中的规则化匹配(RMLS)以及监督语义索引(SSI)等。这些方法通常涉及定义一个匹配函数,该函数将查询(如搜索查询或用户请求)和文档(或数据点)映射到潜在空间,并计算它们之间的相似度。

1.2.3 应用

潜在空间搜索在信息检索、推荐系统、图像搜索等领域有着广泛的应用。例如,在图像搜索中,可以使用潜在空间搜索来找到与查询图像在视觉上相似的其他图像。通过潜在空间搜索,我们能够快速准确地找到与查询相关的内容,提高搜索效率和用户体验。

1.2.3 技术细节

潜在空间搜索通常涉及将查询和文档映射到潜在空间的映射函数。这些映射函数可以是线性的(如PLS)或非线性的(如通过深度神经网络学习得到的)。在某些情况下,可能需要学习这些映射函数,以便它们能够最好地捕捉数据中的结构和关系。这通常涉及到优化目标函数,如基于点击数据的pointwise loss。

1.2.4 优势

潜在空间搜索能够处理高维数据,并通过将数据映射到低维空间来减少计算复杂度。它还能够捕捉数据中的非线性关系,并发现传统方法可能无法发现的模式。这些优势使得潜在空间搜索在处理复杂数据和发现隐藏模式方面更加有效。

1.2.5 挑战

潜在空间搜索可能面临非凸优化问题的挑战,需要采用合适的优化算法来找到全局最优解。此外,在某些情况下,可能需要大量的训练数据来学习有效的映射函数。这些挑战限制了潜在空间搜索的适用性和效果,需要进一步的研究和探索来解决。

潜在空间搜索是在深度学习和机器学习中用于在潜在空间中寻找与特定查询或目标相关的点或区域的过程。它采用了多种方法和技术,并在多个领域有着广泛的应用。通过潜在空间搜索,我们能够更有效地处理高维数据,并发现数据中的隐藏模式和结构。

1.3 Stable Diffusion简介

1.3.1 Stable Diffusion定义

Stable Diffusion是一种深度学习模型,特别用于生成高质量的图像。它属于生成对抗网络(GANs)的一种,但与其他GANs相比,Stable Diffusion特别强调生成过程中的稳定性和高分辨率输出。该模型由Stability AI公司开发并于2022年发布。

1.3.2 核心技术
  • 去噪扩散过程:Stable Diffusion的核心是一个去噪扩散过程,能够逐步将随机噪声转化为具有清晰结构的图像。
  • 模型架构:Stable Diffusion采用了先进的模型架构,特别是其最新的版本Stable Diffusion 3,采用了与Sora相同的DiT(Diffusion Transformer)架构,支持多主题提示,并改进了文字书写效果。
1.3.3 Stable Diffusion特点
  • 高质量图像生成:Stable Diffusion能够生成非常高质量的图像,包括艺术作品、风景、人脸等,且分辨率可以非常高。最新的XL版本可以在1024*1024像素的级别上生成可控的图像。
  • 稳定性:在生成图像时,Stable Diffusion减少了传统GANs中常见的不稳定性和模式崩塌问题。
  • 速度和效率:该模型优化了计算资源的使用,可以在相对较短的时间内生成图像,提高了实际应用中的效率。
  • 文本到图像的生成:用户可以输入文本描述,模型会根据这些描述生成相应的图像。
  • 开源与可控性:Stable Diffusion的部分版本是开源的,用户可以根据需求自由使用和修改模型。同时,用户可以较精确地控制生成图像的风格和内容。
1.3.4 应用领域

Stable Diffusion在艺术创作、游戏开发、虚拟现实等领域具有广泛的应用潜力。用户可以利用该模型生成各种高质量的图像内容,以满足不同的创作和娱乐需求。

1.3.5 挑战与前景

虽然Stable Diffusion已经取得了显著的成果,但其使用也伴随着责任和伦理考量。例如,需要避免滥用该技术生成虚假信息或侵犯版权的内容。未来,随着技术的不断发展和完善,Stable Diffusion有望在更多领域展现出其巨大的潜力和价值。

2. Stable Diffusion潜在空间搜索的实现

2.1 技术概要

生成图像模型学习视觉世界的“潜在空间”:这是一个低维向量空间,其中每个点映射到一个图像。从流形上的这样一个点回到一个可显示图像的过程称为“解码”——在Stable Diffusion模型中,这一过程由“解码器”模型来处理。

这个图像的潜在空间是连续和可插值的,意味着:

  • 在空间上轻微移动只会轻微改变相应的图像(连续性)。
  • 对于空间上的任意两个点A和B(即任意两幅图像),可以通过一条路径从A移动到B,路径上的每个中间点也在流形上(也就是也是有效的图像)。这些中间点将被称为两个起始图像之间的“插值”。

Stable Diffusion不仅仅是一个图像模型,它也是一个自然语言模型。它有两个潜在空间:一个是由训练期间使用的编码器学习到的图像表示空间,另一个是提示潜在空间,这是通过预训练和训练时微调的组合学习到的。

“潜在空间探索”,是采样潜在空间中的一个点并逐步改变潜在表示的过程。它最常见的应用是生成动画,其中每个采样点被送入解码器,并存储为最终动画的一帧。对于高质量的潜在表示,这可以产生连贯的动画。这些动画可以提供潜在空间特征图的洞察,并最终带来训练过程的改进。

本文将展示如何利用KerasCV中的Stable Diffusion API来执行提示插值,以及通过Stable Diffusion的视觉潜在空间和文本编码器的潜在空间进行循环游走。

2.1.1 设置

首先,我们导入KerasCV并使用教程中讨论的优化加载Stable Diffusion模型。

!pip install keras-cv --upgrade --quiet
import keras_cv
import keras
import matplotlib.pyplot as plt
from keras import ops
import numpy as np
import math
from PIL import Image

# 启用混合精度
# (只有在您有较新的NVIDIA GPU时才这样做)
keras.mixed_precision.set_global_policy("mixed_float16")

# 实例化Stable Diffusion模型
model = keras_cv.models.StableDiffusion(jit_compile=True)
通过使用此模型检查点,您承认其使用受CreativeML Open RAIL-M许可条款的约束,详情请见 https://raw.githubusercontent.com/CompVis/stable-diffusion/main/LICENSE

2.2 在文本提示之间进行插值

在Stable Diffusion中,文本提示首先被编码成向量,并且该编码用来指导扩散过程。潜在编码向量的形状是77x768(非常大!),当我们给Stable Diffusion一个文本提示时,我们实际上是从潜在流形上的这样一个点生成图像。

为了探索这个流形的更多部分,我们可以在两个文本编码之间进行插值,并在这些插值点生成图像。

下面的代码演示了如何通过两个文本提示来生成它们在潜在空间中的编码,并在这些编码之间进行插值。首先,我们定义了两个文本提示:一个描述了一只金毛寻回犬在海滩上的水彩画,另一个描述了一碗水果的静物DSLR照片。然后,我们设置了一个插值步骤数,即5,这意味着我们希望在两个编码之间生成5个等距的点。

接下来,我们使用模型的encode_text()函数对这两个文本提示进行编码,将它们转换为潜在空间中的向量。为了确保编码结果具有正确的形状,我们使用了ops.squeeze()函数来去除任何单一维度。

一旦我们有了这两个编码,我们就可以使用ops.linspace()函数在它们之间进行线性插值。这个函数会生成一个数组,其中包含interpolation_steps个等距的点,每个点都位于原始的两个编码之间。

最后,为了了解潜在空间中的编码大小,我们打印了第一个编码(encoding_1)的形状。由于两个编码都是通过相同的函数生成的,并且没有改变其形状,所以第二个编码(encoding_2)的形状也将是相同的。这个形状通常表示了潜在空间中向量的维度。

prompt_1 = "一只金毛寻回犬在海滩上的水彩画"
prompt_2 = "一碗水果的静物DSLR照片"
interpolation_steps = 5

encoding_1 = ops.squeeze(model.encode_text(prompt_1))
encoding_2 = ops.squeeze(model.encode_text(prompt_2))

interpolated_encodings = ops.linspace(encoding_1, encoding_2, interpolation_steps)

# 显示潜在流形的大小
print(f"编码形状: {
     encoding_1.shape}")
Downloading data from https://github.com/openai/CLIP/blob/main/clip/bpe_simple_vocab_16e6.txt.gz?raw=true
 1356917/1356917 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_encoder.h5
 492466864/492466864 ━━━━━━━━━━━━━━━━━━━━ 7s 0us/step
Encoding shape: (77, 768)

一旦我们进行了编码插值,我们就可以生成每个点的图像。注意,为了保持结果图像之间的稳定性,我们保持图像之间的扩散噪声不变。

首先,设置一个随机数种子seed,以确保结果的可复现性。程序员使用这个种子生成了一组具有特定形状和维度的随机噪声noise。在这里,噪声的形状是(512 // 8, 512 // 8, 4),这可能对应于某个特定分辨率图像的降采样版本(通常扩散模型会在较低分辨率上工作,然后逐步上采样到目标分辨率),而4可能代表噪声的不同通道或时间步长。

接下来,调用模型的generate_image方法,并传递了之前计算得到的插值编码interpolated_encodings、批处理大小batch_size(设置为插值步骤数interpolation_steps),以及前面生成的随机噪声noise。

seed = 12345
noise = keras.random.normal((512 // 8, 512 // 8, 4), seed=seed)

images = model.generate_image(
    interpolated_encodings,
    batch_size=interpolation_steps,
    diffusion_noise=noise,
)
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_diffusion_model.h5
 3439090152/3439090152 ━━━━━━━━━━━━━━━━━━━━ 26s 0us/step
 50/50 ━━━━━━━━━━━━━━━━━━━━ 173s 311ms/step
Downloading data from https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_decoder.h5
 198180272/198180272 ━━━━━━━━━━━━━━━━━━━━ 1s 0us/step

现在我们已经生成了一些插值图像,让我们来看一下它们!

本文的源代码将把图像序列导出为gif,以便它们可以容易地在时间上下文中查看。对于概念上第一张和最后一张图像不匹配的图像序列,我们将橡皮筋绑在gif上。

from IPython.display import Image as IImage
IImage("doggo-and-fruit-5.gif")
def export_as_gif(filename, images, frames_per_second=10, rubber_band=False):
    if rubber_band:
        images += images[2:-1][::-1]
    images[0].save(
        filename,
        save_all=True,
        append_images=images[1:],
        duration=1000 // frames_per_second,
        loop=0,
    )

export_as_gif(
    "doggo-and-fruit-5.gif",
    [Image.fromarray(img) for img in images],
    frames_per_second=2,
    rubber_band=True,
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值