达者为先 师者之意
Java 多态
1 什么是多态
多态性是面向对象编程的又一个重要特征,它是指在父类中定义的属性和方法被子类继承之后,可以具有不同的数据类型或表现出不同的行为,这使得同一个属性或方法在父类及其各个子类中具有不同的含义。
对面向对象来说,多态分为编译时多态和运行时多态。其中编译时多态是静态的,主要是指方法的重载,它是根据参数列表的不同来区分不同的方法。通过编译之后会变成两个不同的方法,在运行时谈不上多态。而运行时多态是动态的,它是通过动态绑定来实现的,也就是大家通常所说的多态性。
Java 实现多态有 3 个必要条件:继承、重写和向上转型。只有满足这 3 个条件,开发人员才能够在同一个继承结构中使用统一的逻辑实现代码处理不同的对象,从而执行不同的行为。
- 继承:在多态中必须存在有继承关系的子类和父类。
- 重写:子类对父类中某些方法进行重新定义,在调用这些方法时就会调用子类的方法。
- 向上转型:在多态中需要将子类的引用赋给父类对象,只有这样该引用才既能可以调用父类的方法,又能调用子类的方法。
2 多态的实现方式
方式一:重写
这个内容已经在上一章节详细讲过,就不再阐述,Java 重写(Override)与重载(Overload)。
方式二:接口
-
生活中的接口最具代表性的就是插座,例如一个三接头的插头都能接在三孔插座中,因为这个是每个国家都有各自规定的接口规则,有可能到国外就不行,那是因为国外自己定义的接口类型。
-
java中的接口类似于生活中的接口,就是一些方法特征的集合,但没有方法的实现。
方式三:抽象类和抽象方法
3 重写
class Shape {
void draw() {}
}
class Circle extends Shape {
void draw() {
System.out.println("Circle.draw()");
}
}
class Square extends Shape {
void draw() {
System.out.println("Square.draw()");
}
}
class Triangle extends Shape {
void draw() {
System.out.println("Triangle.draw()");
}
}
当使用多态方式调用方法时,首先检查父类中是否有该方法,如果没有,则编译错误;如果有,再去调用子类的同名方法。
- 多态的好处:可以使程序有良好的扩展,并可以对所有类的对象进行通用处理。
下面再通过一个例子来演示重写如何实现多态性。例子使用了类的继承和运行时多态机制,具体步骤如下。
- 创建 Figure 类,在该类中首先定义存储二维对象的尺寸,然后定义有两个参数的构造方法,最后添加 area() 方法,该方法计算对象的面积。代码如下:
public class Figure {
double dim1;
double dim2;
Figure(double d1, double d2) {
// 有参的构造方法
this.dim1 = d1;
this.dim2 = d2;
}
double area() {
// 用于计算对象的面积
System.out.println("父类中计算对象面积的方法,没有实际意义,需要在子类中重写。");
return 0;
}
}
- 创建继承自 Figure 类的 Rectangle 子类,该类调用父类的构造方法,并且重写父类中的 area() 方法。代码如下:
public class Rectangle extends Figure {
Rectangle(double d1, double d2) {
super(d1, d2);
}
double area() {
System.out.println("长方形的面积:");
return super.dim1 * super.dim2;
}
}
- 创建继承自 Figure 类的 Triangle 子类,该类与 Rectangle 相似。代码如下:
public class Triangle extends Figure {
Triangle(double d1, double d2) {
super(d1, d2);
}
double area() {
System.out.println("三角形的面积:");
return super.dim1 * super.dim2 / 2;
}
}
- 创建 Test 测试类,在该类的 main() 方法中首先声明 Figure 类的变量 figure,然后分别为 figure 变量指定不同的对象,并调用这些对象的 area() 方法。代码如下:
public class Test {
public static void main(String[] args) {
Figure figure; // 声明Figure类的变量
figure = new Rectangle(9, 9);
System.out.println(figure.area());
System.out.println("===============================");
figure = new Triangle(6, 8);
System.out.println(figure.area());
System.out.println("===============================");
figure = new Figure(10, 10);
System.out.println(figure.area());
}
}
从上述代码可以发现,无论 figure 变量的对象是 Rectangle 还是 Triangle,它们都是 Figure 类的子类,因此可以向上转型为该类,从而实现多态。
- 执行上述代码,输出结果如下:
长方形的面积:
81.0
===============================
三角形的面积:
24.0
===============================
父类中计算对象面积的方法,没有实际意义,需要在子类中重写。
0.0
4 接口
接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明。一个类通过继承接口的方式,从而来继承接口的抽象方法。
接口并不是类,编写接口的方式和类很相似,但是它们属于不同的概念。类描述对象的属性和方法。接口则包含类要实现的方法。
除非实现接口的类是抽象类,否则该类要定义接口中的所有方法。
接口无法被实例化,但是可以被实现。一个实现接口的类,必须实现接口内所描述的所有方法,否则就必须声明为抽象类。另外,在 Java 中,接口类型可用来声明一个变量,他们可以成为一个空指针,或是被绑定在一个以此接口实现的对象。
4.1 接口与类相似点:
- 一个接口可以有多个方法。
- 接口文件保存在 .java 结尾的文件中,文件名使用接口名。
- 接口的字节码文件保存在 .class 结尾的文件中。
- 接口相应的字节码文件必须在与包名称相匹配的目录结构中。
4.2 接口与类的区别:
- 接口不能用于实例化对象。
- 接口没有构造方法。
- 接口中所有的方法必须是抽象方法,Java 8 之后 接口中可以使用 default 关键字修饰的非抽象方法。
- 接口不能包含成员变量,除了 static 和 final 变量。
- 接口不是被类继承了,而是要被类实现。
- 接口支持多继承。
4.3 接口特性
- 接口中每一个方法也是隐式抽象的,接口中的方法会被隐式的指定为 public abstract(只能是 public abstract,其他修饰符都会报错)。
- 接口中可以含有变量,但是接口中的变量会被隐式的指定为 public static final 变量(并且只能是 public,用 private 修饰会报编译错误)。
- 接口中的方法是不能在接口中实现的,只能由实现接口的类来实现接口中的方法。
4.4 抽象类和接口的区别
- 抽象类中的方法可以有方法体,就是能实现方法的具体功能,但是接口中的方法不行。
- 抽象类中的成员变量可以是各种类型的,而接口中的成员变量只能是 public static final 类型的。
- 接口中不能含有静态代码块以及静态方法(用 static 修饰的方法),而抽象类是可以有静态代码块和静态方法。
- 一个类只能继承一个抽象类,而一个类却可以实现多个接口。
4.5 定义接口
Java 接口的定义方式与类基本相同,不过接口定义使用的关键字是 interface,接口定义的语法格式如下:
[public] interface interface_name [extends interface1_name[, interface2_name,…]] {
// 接口体,其中可以包含定义常量和声明方法
[public] [static] [final] type constant_name = value; // 定义常量
[public] [abstract] returnType method_name(parameter_list); // 声明方法
}
对以上语法的说明如下:
- public 表示接口的修饰符,当没有修饰符时,则使用默认的修饰符,此时该接口的访问权限仅局限于所属的包;
- interface_name 表示接口的名称。接口名应与类名采用相同的命名规则,即如果仅从语法角度来看,接口名只要是合法的标识符即可。如果要遵守 Java 可读性规范,则接口名应由多个有意义的单词连缀而成,每个单词首字母大写,单词与单词之间无需任何分隔符。
- extends 表示接口的继承关系;
- interface1_name 表示要继承的接口名称;
- constant_name 表示变量名称,一般是 static 和 final 型的;
- returnType 表示方法的返回值类型;
- parameter_list 表示参数列表,在接口中的方法是没有方法体的。
注意:一个接口可以有多个直接父接口,但接口只能继承接口,不能继承类。
接口对于其声明、变量和方法都做了许多限制,这些限制作为接口的特征归纳如下:
-
具有 public 访问控制符的接口,允许任何类使用;没有指定 public 的接口,其访问将局限于所属的包。
-
方法的声明不需要其他修饰符,在接口中声明的方法,将隐式地声明为公有的(public)和抽象的(abstract)。
-
在 Java 接口中声明的变量其实都是常量,接口中的变量声明,将隐式地声明为 public、static 和 final,即常量,所以接口中定义的变量必须初始化。
-
接口没有构造方法,不能被实例化。例如:
public interface A {
publicA(){…} // 编译出错,接口不允许定义构造方法
}
一个接口不能够实现另一个接口,但它可以继承多个其他接口。子接口可以对父接口的方法和常量进行重写。例如:
public interface StudentInterface extends PeopleInterface {
// 接口 StudentInterface 继承 PeopleInterface
int age = 25; // 常量age重写父接口中的age常量
void getInfo(); // 方法getInfo()重写父接口中的getInfo()方法
}
例如,定义一个接口 MyInterface,并在该接口中声明常量和方法,如下:
纯文本复制
public interface MyInterface { // 接口myInterface
String name; // 不合法,变量name必须初始化
int age = 20; // 合法,等同于 public static final int age = 20;
void getInfo(); // 方法声明,等同于 public abstract void getInfo();
}
4.6 实现接口
接口的主要用途就是被实现类实现,一个类可以实现一个或多个接口,继承使用 extends 关键字,实现则使用 implements 关键字。因为一个类可以实现多个接口,这也是 Java 为单继承灵活性不足所作的补充。类实现接口的语法格式如下:
<public> class <class_name> [extends superclass_name] [implements interface1_name[, interface2_name…]] {
// 主体
}
对以上语法的说明如下:
- public:类的修饰符;
- superclass_name:需要继承的父类名称;
- interface1_name:要实现的接口名称。
实现接口需要注意以下几点:
- 实现接口与继承父类相似,一样可以获得所实现接口里定义的常量和方法。如果一个类需要实现多个接口,则多个接口之间以逗号分隔。
- 一个类可以继承一个父类,并同时实现多个接口,implements 部分必须放在 extends 部分之后。
- 一个类实现了一个或多个接口之后,这个类必须完全实现这些接口里所定义的全部抽象方法(也就是重写这些抽象方法);否则,该类将保留从父接口那里继承到的抽象方法,该类也必须定义成抽象类。
在程序的开发中,需要完成两个数的求和运算和比较运算功能的类非常多。那么可以定义一个接口来将类似的功能组织在一起。下面创建一个示例,具体介绍接口的实现方式。
- 创建一个名称为 IMath 的接口,代码如下:
public interface IMath {
public int sum(); // 完成两个数的相加
public int maxNum(int a,int b); // 获取较大的数
}
- 定义一个 MathClass 类并实现 IMath 接口,MathClass 类实现代码如下:
public class MathClass implements IMath {
private int num1; // 第 1 个操作数
private int num2; // 第 2 个操作数
public MathClass(int num1,int num2) {
// 构造方法
this.num1 = num1;
this.num2 = num2;
}
// 实现接口中的求和方法
public int sum() {
return num1 + num2;
}
// 实现接口中的获取较大数的方法
public int maxNum(int a,int b) {
if(a >= b) {
return a;
} else {
return b;
}
}
}
在实现类中,所有的方法都使用了 public 访问修饰符声明。无论何时实现一个由接口定义的方法,它都必须实现为 public,因为接口中的所有成员都显式声明为 public。
- 最后创建测试类 NumTest,实例化接口的实现类 MathClass,调用该类中的方法并输出结果。该类内容如下:
public class NumTest {
public static void main(String[] args) {
// 创建实现类的对象
MathClass calc = new MathClass(100, 300);
System.out.println("100 和 300 相加结果是:" + calc.sum());
System.out.println("100 比较 300,哪个大:" + calc.maxNum(100, 300));
}
}
/*
程序运行结果如下所示。
100 和 300 相加结果是:400
100 比较 300,哪个大:300
*/
在该程序中,首先定义了一个 IMath 的接口,在该接口中只声明了两个未实现的方法,这两个方法需要在接口的实现类中实现。在实现类 MathClass 中定义了两个私有的属性,并赋予两个属性初始值,同时创建了该类的构造方法。因为该类实现了 MathClass 接口,因此必须实现接口中的方法。在最后的测试类中,需要创建实现类对象,然后通过实现类对象调用实现类中的方法。
4.7 对以上定义接口和实现接口进行总结简化
4.7.1 接口的声明
接口的声明语法格式如下:
[可见度] interface 接口名称 [extends 其他的接口名] {
// 声明变量
// 抽象方法
}
Interface关键字用来声明一个接口。下面是接口声明的一个简单例子。
NameOfInterface.java 文件代码:
/* 文件名 : NameOfInterface.java */
import java.lang.*;
//引入包
public interface NameOfInterface
{
//任何类型 final, static 字段
//抽象方法
}
接口有以下特性:
- 接口是隐式抽象的,当声明一个接口的时候,不必使用abstract关键字。
- 接口中每一个方法也是隐式抽象的,声明时同样不需要abstract关键字。
- 接口中的方法都是公有的。
实例
Animal.java 文件代码:
/* 文件名 : Animal.java */
interface Animal {
public void eat();
public void travel();
}
4.7.2 接口的实现
当类实现接口的时候,类要实现接口中所有的方法。否则,类必须声明为抽象的类。
类使用implements关键字实现接口。在类声明中,Implements关键字放在class声明后面。
实现一个接口的语法,可以使用这个公式:
接口语法:
...implements 接口名称[, 其他接口名称, 其他接口名称..., ...] ...
实例
MammalInt.java 文件代码:
/* 文件名 : MammalInt.java */
public class MammalInt implements Animal{
public void eat(){
System.out.println("Mammal eats");
}
public void travel(){
System.out.println("Mammal travels");
}
public int noOfLegs(){
return 0;
}
public static void main(String args[]){
MammalInt m = new MammalInt();
m.eat();
m.travel();
}
}
/*
以上实例编译运行结果如下:
Mammal eats
Mammal travels
*/
重写接口中声明的方法时,需要注意以下规则:
- 类在实现接口的方法时,不能抛出强制性异常,只能在接口中,或者继承接口的抽象类中抛出该强制性异常。
- 类在重写方法时要保持一致的方法名,并且应该保持相同或者相兼容的返回值类型。
- 如果实现接口的类是抽象类,那么就没必要实现该接口的方法。
在实现接口的时候,也要注意一些规则:
- 一个类可以同时实现多个接口。
- 一个类只能继承一个类,但是能实现多个接口。
- 一个接口能继承另一个接口,这和类之间的继承比较相似。
4.8 继承接口
一个接口能继承另一个接口,和类之间的继承方式比较相似。接口的继承使用extends关键字,子接口继承父接口的方法。
下面的Sports接口被Hockey和Football接口继承:
// 文件名: Sports.java
public interface Sports
{
public void setHomeTeam(String name);
public void setVisitingTeam(String name);
}
// 文件名: Football.java
public interface Football extends Sports
{
public void homeTeamScored(int points);
public void visitingTeamScored(int points);
public void endOfQuarter(int quarter);
}
// 文件名: Hockey.java
public interface Hockey extends Sports
{
public void homeGoalScored();
public void visitingGoalScored();
public void endOfPeriod(int period);
public void overtimePeriod(int ot);
}
Hockey接口自己声明了四个方法,从Sports接口继承了两个方法,这样,实现Hockey接口的类需要实现六个方法。
相似的,实现Football接口的类需要实现五个方法,其中两个来自于Sports接口。
4.8.1 接口的多继承
在Java中,类的多继承是不合法,但接口允许多继承。
在接口的多继承中extends关键字只需要使用一次,在其后跟着继承接口。 如下所示:
public interface Hockey extends Sports, Event
以上的程序片段是合法定义的子接口,与类不同的是,接口允许多继承,而 Sports及 Event 可以定义或是继承相同的方法
4.8.2 标记接口
最常用的继承接口是没有包含任何方法的接口。
标记接口是没有任何方法和属性的接口.它仅仅表明它的类属于一个特定的类型,供其他代码来测试允许做一些事情。
标记接口作用:简单形象的说就是给某个对象打个标(盖个戳),使对象拥有某个或某些特权。
例如:java.awt.event 包中的 MouseListener 接口继承的 java.util.EventListener 接口定义如下:
package java.util;
public interface EventListener
{}
没有任何方法的接口被称为标记接口。标记接口主要用于以下两种目的:
-
建立一个公共的父接口:
正如EventListener接口,这是由几十个其他接口扩展的Java API,你可以使用一个标记接口来建立一组接口的父接口。例如:当一个接口继承了EventListener接口,Java虚拟机(JVM)就知道该接口将要被用于一个事件的代理方案。 -
向一个类添加数据类型:
这种情况是标记接口最初的目的,实现标记接口的类不需要定义任何接口方法(因为标记接口根本就没有方法),但是该类通过多态性变成一个接口类型。
5 抽象(abstract)类
Java 语言提供了两种类,分别为具体类和抽象类。前面学习接触的类都是具体类。这一节介绍一下抽象类。
在面向对象的概念中,所有的对象都是通过类来描绘的,但是反过来,并不是所有的类都是用来描绘对象的,如果一个类中没有包含足够的信息来描绘一个具体的对象,那么这样的类称为抽象类。
抽象类除了不能实例化对象之外,类的其它功能依然存在,成员变量、成员方法和构造方法的访问方式和普通类一样。
由于抽象类不能实例化对象,所以抽象类必须被继承,才能被使用。也是因为这个原因,通常在设计阶段决定要不要设计抽象类。
父类包含了子类集合的常见的方法,但是由于父类本身是抽象的,所以不能使用这些方法。
在 Java 中抽象类表示的是一种继承关系,一个类只能继承一个抽象类,而一个类却可以实现多个接口。
5.1 抽象方法
如果你想设计这样一个类,该类包含一个特别的成员方法,该方法的具体实现由它的子类确定,那么你可以在父类中声明该方法为抽象方法。
Abstract 关键字同样可以用来声明抽象方法,抽象方法只包含一个方法名,而没有方法体。
抽象方法没有定义,方法名后面直接跟一个分号,而不是花括号。
public abstract class Employee
{
private String name;
private String address;
private int number;
public abstract double computePay();
//其余代码
}
声明抽象方法会造成以下两个结果:
- 如果一个类包含抽象方法,那么该类必须是抽象类。
- 任何子类必须重写父类的抽象方法,或者声明自身为抽象类。
继承抽象方法的子类必须重写该方法。否则,该子类也必须声明为抽象类。最终,必须有子类实现该抽象方法,否则,从最初的父类到最终的子类都不能用来实例化对象。
如果Salary类继承了Employee类,那么它必须实现computePay()方法:
Salary.java 文件代码:
/* 文件名 : Salary.java */
public class Salary extends Employee
{
private double salary; // Annual salary
public double computePay()
{
System.out.println("Computing salary pay for " + getName());
return salary/52;
}
//其余代码
}
5.2 抽象类
在 Java 中抽象类的语法格式如下:
<abstract>class<class_name> {
<abstract><type><method_name>(parameter-iist);
}
其中,abstract 表示该类或该方法是抽象的;class_name 表示抽象类的名称;method_name 表示抽象方法名称,parameter-list 表示方法参数列表。
如果一个方法使用 abstract 来修饰,则说明该方法是抽象方法,抽象方法只有声明没有实现。需要注意的是 abstract 关键字只能用于普通方法,不能用于 static 方法或者构造方法中。
抽象方法的 3 个特征如下:
- 抽象方法没有方法体
- 抽象方法必须存在于抽象类中
- 子类重写父类时,必须重写父类所有的抽象方法
注意:在使用 abstract 关键字修饰抽象方法时不能使用 private 修饰,因为抽象方法必须被子类重写,而如果使用了 private 声明,则子类是无法重写的。
抽象类的定义和使用规则如下:
- 抽象类和抽象方法都要使用 abstract 关键字声明。
- 如果一个方法被声明为抽象的,那么这个类也必须声明为抽象的。而一个抽象类中,可以有 0~n 个抽象方法,以及 0~n 个具体方法。
- 抽象类不能实例化,也就是不能使用 new 关键字创建对象。
不同几何图形的面积计算公式是不同的,但是它们具有的特性是相同的,都具有长和宽这两个属性,也都具有面积计算的方法。那么可以定义一个抽象类,在该抽象类中含有两个属性(width 和 height)和一个抽象方法 area( ),具体步骤如下。
- 首先创建一个表示图形的抽象类 Shape,代码如下所示。
public abstract class Shape {
public int width; // 几何图形的长
public int height; // 几何图形的宽
public Shape(int width, int height) {
this.width = width;
this.height = height;
}
public abstract double area(); // 定义抽象方法,计算面积
}
- 定义一个正方形类,该类继承自形状类 Shape,并重写了 area( ) 抽象方法。正方形类的代码如下:
public class Square extends Shape {
public Square(int width, int height) {
super(width, height);
}
// 重写父类中的抽象方法,实现计算正方形面积的功能
@Override
public double area() {
return width * height;
}
}
- 定义一个三角形类,该类与正方形类一样,需要继承形状类 Shape,并重写父类中的抽象方法 area()。三角形类的代码实现如下:
public class Triangle extends Shape {
public Triangle(int width, int height) {
super(width, height);
}
// 重写父类中的抽象方法,实现计算三角形面积的功能
@Override
public double area() {
return 0.5 * width * height;
}
}
- 最后创建一个测试类,分别创建正方形类和三角形类的对象,并调用各类中的 area() 方法,打印出不同形状的几何图形的面积。测试类的代码如下:
public class ShapeTest {
public static void main(String[] args) {
Square square = new Square(5, 4); // 创建正方形类对象
System.out.println("正方形的面积为:" + square.area());
Triangle triangle = new Triangle(2, 5); // 创建三角形类对象
System.out.println("三角形的面积为:" + triangle.area());
}
}
在该程序中,创建了 4 个类,分别为图形类 Shape、正方形类 Square、三角形类 Triangle 和测试类 ShapeTest。其中图形类 Shape 是一个抽象类,创建了两个属性,分别为图形的长度和宽度,并通过构造方法 Shape( ) 给这两个属性赋值。
在 Shape 类的最后定义了一个抽象方法 area( ),用来计算图形的面积。在这里,Shape 类只是定义了计算图形面积的方法,而对于如何计算并没有任何限制。也可以这样理解,抽象类 Shape 仅定义了子类的一般形式。
正方形类 Square 继承抽象类 Shape,并实现了抽象方法 area( )。三角形类 Triangle 的实现和正方形类相同,这里不再介绍。
在测试类 ShapeTest 的 main( ) 方法中,首先创建了正方形类和三角形类的实例化对象 square 和 triangle,然后分别调用 area( ) 方法实现了面积的计算功能。
- 运行该程序,输出的结果如下:
正方形的面积为:20.0
三角形的面积为:5.0
6 内部类
在类内部可定义成员变量和方法,且在类内部也可以定义另一个类。如果在类 Outer 的内部再定义一个类 Inner,此时类 Inner 就称为内部类(或称为嵌套类),而类 Outer 则称为外部类(或称为宿主类)。
内部类可以很好地实现隐藏,一般的非内部类是不允许有 private 与 protected 权限的,但内部类可以。内部类拥有外部类的所有元素的访问权限。
内部类可以分为:实例内部类、静态内部类和成员内部类,每种内部类都有它特定的一些特点,本节先详细介绍一些和内部类相关的知识。
在类 A 中定义类 B,那么类 B 就是内部类,也称为嵌套类,相对而言,类 A 就是外部类。如果有多层嵌套,例如类 A 中有内部类 B,而类 B 中还有内部类 C,那么通常将最外层的类称为顶层类(或者顶级类)。
内部类也可以分为多种形式,与变量非常类似,如下图所示。
内部类的特点如下:
- 内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。
- 内部类不能用普通的方式访问。内部类是外部类的一个成员,因此内部类可以自由地访问外部类的成员变量,无论是否为 private 的。
- 内部类声明成静态的,就不能随便访问外部类的成员变量,仍然是只能访问外部类的静态成员变量。
内部类的使用方法非常简单,例如下面的代码演示了内部类最简单的应用。
public class Test {
public class InnerClass {
public int getSum(int x,int y) {
return x + y;
}
}
public static void main(String[] args) {
Test.InnerClass ti = new Test().new InnerClass();
int i = ti.getSum(2,3);
System.out.println(i); // 输出5
}
}
有关内部类的说明有如下几点。
- 外部类只有两种访问级别:public 和默认;内部类则有 4 种访问级别:public、protected、 private 和默认。
- 在外部类中可以直接通过内部类的类名访问内部类。
InnerClass ic = new InnerClass(); // InnerClass为内部类的类名
- 在外部类以外的其他类中则需要通过内部类的完整类名访问内部类。
Test.InnerClass ti = newTest().new InnerClass(); // Test.innerClass是内部类的完整类名
内部类与外部类不能重名。
提示:内部类的很多访问规则可以参考变量和方法。另外使用内部类可以使程序结构变得紧凑,但是却在一定程度上破坏了 Java 面向对象的思想。
我们将在接下来详讲 Java 内部类:
- Java实例内部类
- Java静态内部类
- Java局部内部类
6.1 实例内部类
实例内部类是指没有用 static 修饰的内部类,有的地方也称为非静态内部类。示例代码如下:
public class Outer {
class Inner {
// 实例内部类
}
}
上述示例中的 Inner 类就是实例内部类。实例内部类有如下特点。
- 在外部类的静态方法和外部类以外的其他类中,必须通过外部类的实例创建内部类的实例。
public class Outer {
class Inner1 {
}
Inner1 i = new Inner1(); // 不需要创建外部类实例
public void method1() {
Inner1 i = new Inner1(); // 不需要创建外部类实例
}
public static void method2() {
Inner1 i = new Outer().new inner1(); // 需要创建外部类实例
}
class Inner2 {
Inner1 i = new Inner1(); // 不需要创建外部类实例
}
}
class OtherClass {
Outer.Inner i = new Outer().new Inner(); // 需要创建外部类实例
}
2)在实例内部类中,可以访问外部类的所有成员。
public class Outer {
public int a = 100;
static int b = 100;
final int c = 100;
private int d = 100;
public String method1() {
return "实例方法1";
}
public static String method2() {
return "静态方法2";
}
class Inner {
int a2 = a + 1; // 访问public的a
int b2 = b + 1; // 访问static的b
int c2 = c + 1; // 访问final的c
int d2 = d + 1; // 访问private的d
String str1 = method1(); // 访问实例方法method1
String str2 = method2(); // 访问静态方法method2
}
public static void main(String[] args) {
Inner i = new Outer().new Inner(); // 创建内部类实例
System.out.println(i.a2); // 输出101
System.out.println(i.b2); // 输出101
System.out.println(i.c2); // 输出101
System.out.println(i.d2); // 输出101
System.out.println(i.str1); // 输出实例方法1
System.out.println(i.str2); // 输出静态方法2
}
}
提示:如果有多层嵌套,则内部类可以访问所有外部类的成员。
-
在外部类中不能直接访问内部类的成员,而必须通过内部类的实例去访问。如果类 A 包含内部类 B,类 B 中包含内部类 C,则在类 A 中不能直接访问类 C,而应该通过类 B 的实例去访问类 C。
-
外部类实例与内部类实例是一对多的关系,也就是说一个内部类实例只对应一个外部类实例,而一个外部类实例则可以对应多个内部类实例。
如果实例内部类 B 与外部类 A 包含有同名的成员 t,则在类 B 中 t 和 this.t 都表示 B 中的成员 t,而 A.this.t 表示 A 中的成员 t。
public class Outer {
int a = 10;
class Inner {
int a = 20;
int b1 = a;
int b2 = this.a;
int b3 = Outer.this.a;
}
public static void main(String[] args) {
Inner i = new Outer().new Inner();
System.out.println(i.b1); // 输出20
System.out.println(i.b2); // 输出20
System.out.println(i.b3); // 输出10
}
}
- 在实例内部类中不能定义 static 成员,除非同时使用 final 和 static 修饰。
6.2 静态内部类
静态内部类是指使用 static 修饰的内部类。示例代码如下:
public class Outer {
static class Inner {
// 静态内部类
}
}
上述示例中的 Inner 类就是静态内部类。静态内部类有如下特点。
- 在创建静态内部类的实例时,不需要创建外部类的实例。
public class Outer {
static class Inner {
}
}
class OtherClass {
Outer.Inner oi = new Outer.Inner();
}
- 静态内部类中可以定义静态成员和实例成员。外部类以外的其他类需要通过完整的类名访问静态内部类中的静态成员,如果要访问静态内部类中的实例成员,则需要通过静态内部类的实例。
public class Outer {
static class Inner {
int a = 0; // 实例变量a
static int b = 0; // 静态变量 b
}
}
class OtherClass {
Outer.Inner oi = new Outer.Inner();
int a2 = oi.a; // 访问实例成员
int b2 = Outer.Inner.b; // 访问静态成员
}
- 静态内部类可以直接访问外部类的静态成员,如果要访问外部类的实例成员,则需要通过外部类的实例去访问。
public class Outer {
int a = 0; // 实例变量
static int b = 0; // 静态变量
static class Inner {
Outer o = new Outer;
int a2 = o.a; // 访问实例变量
int b2 = b; // 访问静态变量
}
}
6.3 局部内部类
局部内部类是指在一个方法中定义的内部类。示例代码如下:
public class Test {
public void method() {
class Inner {
// 局部内部类
}
}
}
局部内部类有如下特点:
-
局部内部类与局部变量一样,不能使用访问控制修饰符(public、private 和 protected)和 static 修饰符修饰。
-
局部内部类只在当前方法中有效。
public class Test {
Inner i = new Inner(); // 编译出错
Test.Inner ti = new Test.Inner(); // 编译出错
Test.Inner ti2 = new Test().new Inner(); // 编译出错
public void method() {
class Inner{
}
Inner i = new Inner();
}
}
-
局部内部类中不能定义 static 成员。
-
局部内部类中还可以包含内部类,但是这些内部类也不能使用访问控制修饰符(public、private 和 protected)和 static 修饰符修饰。
-
在局部内部类中可以访问外部类的所有成员。
-
在局部内部类中只可以访问当前方法中 final 类型的参数与变量。如果方法中的成员与外部类中的成员同名,则可以使用 .this. 的形式访问外部类中的成员。
public class Test {
int a = 0;
int d = 0;
public void method() {
int b = 0;
final int c = 0;
final int d = 10;
class Inner {
int a2 = a; // 访问外部类中的成员
// int b2 = b; // 编译出错
int c2 = c; // 访问方法中的成员
int d2 = d; // 访问方法中的成员
int d3 = Test.this.d; //访问外部类中的成员
}
Inner i = new Inner();
System.out.println(i.d2); // 输出10
System.out.println(i.d3); // 输出0
}
public static void main(String[] args) {
Test t = new Test();
t.method();
}
}
7 匿名类
匿名类是指没有类名的内部类,必须在创建时使用 new 语句来声明类。其语法形式如下:
new <类或接口>() {
// 类的主体
};
这种形式的 new 语句声明一个新的匿名类,它对一个给定的类进行扩展,或者实现一个给定的接口。使用匿名类可使代码更加简洁、紧凑,模块化程度更高。
匿名类有两种实现方式:
- 继承一个类,重写其方法。
- 实现一个接口(可以是多个),实现其方法。
匿名类是不能有名字的类,它们不能被引用,只能在创建时用 new 语句来声明它们。
匿名类语法格式:
class outerClass {
// 定义一个匿名类
object1 = new Type(parameterList) {
// 匿名类代码
};
}
以上的代码创建了一个匿名类对象 object1,匿名类是表达式形式定义的,所以末尾以分号 ; 来结束。
匿名类通常继承一个父类或实现一个接口。
下面通过代码来说明。
public class Out {
void show() {
System.out.println("调用 Out 类的 show() 方法");
}
}
public class TestAnonymousInterClass {
// 在这个方法中构造一个匿名内部类
private void show() {
Out anonyInter = new Out() {
// 获取匿名内部类的实例
void show() {
System.out.println("调用匿名类中的 show() 方法");
}
};
anonyInter.show();
}
public static void main(String[] args) {
TestAnonymousInterClass test = new TestAnonymousInterClass();
test.show();
}
}
/*
程序的输出结果如下:
调用匿名类中的 show() 方法
从输出结果可以看出,匿名内部类有自己的实现。
*/
提示:匿名内部类实现一个接口的方式与实现一个类的方式相同,这里不再赘述。
匿名类有如下特点:
- 匿名类和局部内部类一样,可以访问外部类的所有成员。如果匿名类位于一个方法中,则匿名类只能访问方法中 final 类型的局部变量和参数。
public static void main(String[] args) {
int a = 10;
final int b = 10;
Out anonyInter = new Out() {
void show() {
// System.out.println("调用了匿名类的 show() 方法"+a); // 编译出错
System.out.println("调用了匿名类的 show() 方法"+b); // 编译通过
}
};
anonyInter.show();
}
从 Java 8 开始添加了 Effectively final 功能,在 Java 8 及以后的版本中代码第 6 行不会出现编译错误。
- 匿名类中允许使用非静态代码块进行成员初始化操作。
Out anonyInter = new Out() {
int i; { // 非静态代码块
i = 10; //成员初始化
}
public void show() {
System.out.println("调用了匿名类的 show() 方法"+i);
}
};
- 匿名类的非静态代码块会在父类的构造方法之后被执行。
7.1 匿名类继承一个父类
以下实例中,创建了 Polygon 类,该类只有一个方法 display(),AnonymousDemo 类继承了 Polygon 类并重写了 Polygon 类的 display() 方法:
实例
class Polygon {
public void display() {
System.out.println("在 Polygon 类内部");
}
}
class AnonymousDemo {
public void createClass() {
// 创建的匿名类继承了 Polygon 类
Polygon p1 = new Polygon() {
public void display() {
System.out.println("在匿名类内部。");
}
};
p1.display();
}
}
class Main {
public static void main(String[] args) {
AnonymousDemo an = new AnonymousDemo();
an.createClass();
}
}
/*
执行以上代码,匿名类的对象 p1 会被创建,
该对象会调用匿名类的 display() 方法,输出结果为:
在匿名类内部。
*/
7.2 匿名类实现一个接口
以下实例创建的匿名类实现了 Polygon 接口:
实例
interface Polygon {
public void display();
}
class AnonymousDemo {
public void createClass() {
// 匿名类实现一个接口
Polygon p1 = new Polygon() {
public void display() {
System.out.println("在匿名类内部。");
}
};
p1.display();
}
}
class Main {
public static void main(String[] args) {
AnonymousDemo an = new AnonymousDemo();
an.createClass();
}
}
/*
输出结果为:
在匿名类内部。
*/
码字不易 求个三连