代码随想录算法训练营第55天|392.判断子序列,115.不同的子序列

代码随想录算法训练营第55天|392.判断子序列,115.不同的子序列

392.判断子序列

题目链接:392.判断子序列,难度:简单
【实现代码】

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = dp[i][j - 1];
                }
            }            
        }
        return dp.back().back() == s.size();
    }
};

【解题思路】

使用双指针法很简单,这里采用动态规划来解决。
动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
  2. 确定递推公式:
  • if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1;
  • if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
  1. dp数组如何初始化:dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。
  2. 确定遍历顺序:从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右
  3. 举例推导dp数组

115.不同的子序列

题目链接:115.不同的子序列,难度:困难
【实现代码】

class Solution {
public:
    int numDistinct(string s, string t) {
        vector<vector<uint32_t>> dp(s.size() + 1, vector<uint32_t>(t.size() + 1, 0));
        for (int i = 0; i <= s.size(); i++) {
            dp[i][0] = 1;
        }
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp.back().back();
    }
};

【解题思路】

动态规划五部曲:

  1. 确定dp数组(dp table)以及下标的含义:dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
  2. 确定递推公式:
  • 当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成:一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];;
  • 当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j],即:dp[i][j] = dp[i - 1][j];
  1. dp数组如何初始化:dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。那么dp[i][0]一定都是1;dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数,即:dp[0][j]一定都是0;dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
  2. 确定遍历顺序:从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i - 1][j],那么遍历顺序也应该是从上到下,从左到右
  3. 举例推导dp数组
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值