LLM应用实战: OpenAI多代理新作-Swarm

1.背景

本qiang~关注到OpenAI两周前发布的轻量级多代理框架Swarm,因此想要深入了解了一下,运行了官方提供的例子,整理并总结一些心得体会~

源码非常简单,各位看官们可以小读一下,本文采用gpt-4o-mini进行验证,如果想免费使用gpt-4o-mini,可私信沟通

Ps: 发布之后,便在X引起了Swarm涉嫌抄袭,但吃瓜的我还是关注技术内部本身。

2. 简介

Swarm项目是一个轻量级multi-agent编排框架,当前主要是为了实验及教学,而非用于生产。

Swarm专注于使agent协调和运行变得轻量级、高度可控且易于测试。

有两个主要抽象模块:Agent和handoffs(切换),Agent封装了instructions和tools,且可以随时选择将对话移交给另一个代理。

3. 适用场景

适用于大量的独立功能和指令难以整合到一个prompt的场景,而是将独立功能和指令通过agent, functions, tools等方式进行链接。

4. Swarm核心模块

4.1 Swarm.run()

类似于openai的chat completions api中的create()函数,接收并返回messages,并在调用之间不保存任何状态。注意,该方法也处理Agent函数执行、切换、上下文变量引用,且可以在返回最终输出前进行多轮对话。

其核心实现了如下循环:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mengrennwpu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值