LC刷题第四天

博客探讨了如何通过递推公式解决一个关于旋转函数的编程挑战。作者建议通过观察状态之间的关联,尤其是前一个状态与后一个状态的关系,来找出递推规律。通过这种方法,可以简化计算并找到最大值。代码示例展示了如何实现这一过程,涉及数组操作和循环优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

396. 旋转函数

递推,这种题一般就是手写样例,找关联性,往往不会很难。
一般地关联性怎么找呢?就是看上一个状态和下一个状态的关联,通常总结成递推或者是整理出一个通项公式。递推经常会用到最大最小值、前缀和、贪心的思想。
本题可以观察到,f[i+1]f[i]区别在于除了某一项之外,其它项累加了一次,同时某一项减去size(nums)*k就可以消除那一项的影响,因此可以得到递推公式惹。

// shiran
#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, n, a) for (int i = n - 1; i >= a; i--)
#define sz(x) (int)size(x)
#define fi first
#define se second
#define all(x) x.begin(), x.end()
#define pb push_back
typedef long long ll;
typedef pair<int, int> PII;
const int mod = 1000000007;
const int N = 1010;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

class Solution
{
public:
    int maxRotateFunction(vector<int> &nums)
    {
        int n = sz(nums);
        int sum = accumulate(all(nums), 0);
        int f = 0, maxn = 0;
        rep(i, 0, n)
            f += i * nums[i];
        maxn = f;
        per(i, n, 1)
        {
            f = f + sum - n * nums[i],
            maxn = max(maxn, f);
        }
        return maxn;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shirandexiaowo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值