563. 二叉树的坡度
思路:递归
遍历一遍结点,返回以当前结点为根结点的权值总和,每一次遍历过程中更新答案
时间复杂度:O(n)O(n)O(n)
空间复杂度:O(h)O(h)O(h)树的深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int res = 0;
int findTilt(TreeNode* root) {
dfs(root);
return res;
}
int dfs(TreeNode* root) {
if (!root) return 0;
int left = dfs(root->left);
int right = dfs(root->right);
res += abs(left - right)
return left + right + root->val;
}
};
二叉树的坡度计算
本文介绍了一种计算二叉树坡度的方法,通过一次递归遍历所有节点,返回以当前节点为根的子树权值总和,并在此过程中更新最大坡度值。时间复杂度为O(n),空间复杂度为O(h),其中h为树的深度。

被折叠的 条评论
为什么被折叠?



