两道非常像的题,放到一起来写
题目大意:用若干2x1的砖去铺一个3xN的空间(POJ3420为4xN),问总共有多少种不同的铺法(POJ3420还要求结果对MOD求模)。
思路:找规律。对于3xN的空间,显然N为奇数时答案为0。设f(n)为3xn时的结果,b(n)为3xn中不能够切分(即不包括由两个更小的n的铺法拼起来的铺法)的铺法数量。
则有f(n)=f(n-1)*b(1)+f(n-2)*b(2)+...+f(0)*b(n)。
n为奇数时铺法显然为0,所以f(n)=f(n-2)*b(2)+f(n-4)*b(4)+...+f(0)*b(n)
又可以求得:
b(2)=3,b(4)=b(6)=...=b(n)=2
=>f(n)=3f(n-2)+2(f(n-4)+f(n-6)+...+f(0))
又有f(n-2)=3f(n-4)+2(f(n-6)+f(n-8)+...+f(0))
两式相减,得f(n)=4f(n-2)-f(n-4)
所以可以构造矩阵:
f(n+4) 0 4 0 -1 f(n+3)
f(n+3) 1 0 0 0 f(n+2)
f(n+2) = 0 1 0 0 * f(n+1)
f(n+1) 0 0 1 0 f(n)
而对于4XN的空间,同样地,设f(n)为3xn时的结果,b(n)为3xn中不能够切分(即不包括由两个更小的n的铺法拼起来的铺法)的铺法数量。
f(n)=f(n-1)*b(1)+f(n-2)*b(2)+...+f(0)*b(n)。
又可以求得:
b(1)=1,b(2)=4
b(4)=b(6)=...=3
b(3)=b(5)=...=2
=>f(n)=f(n-1)+4f(n-2)+3(f(n-4)+f(n-6)+...)+2(f(n-3)+f(n-5)+...)
=>f(n-1)=f(n-2)+4f(n-3)+3(f(n-5)+f(n-7)+...)+2(f(n-4)+f(n-6)+...)
=>f(n)=5f(n-2)+6f(n-3)+5(f(n-4)+f(n-5)+...)
=>f(n-1)=5f(n-3)+6f(n-4)+5(f(n-5)+f(n-6)+...)
=>f(n)-f(n-1)=5f(n-2)+f(n-3)-f(n-4)
=>f(n)=f(n-1)+5f(n-2)+f(n-3)-f(n-4)
所以可以构造矩阵:
f(n+4) 1 5 1 -1 f(n+3)
f(n+3) 1 0 0 0 f(n+2)
f(n+2) = 0 1 0 0 * f(n+1)
f(n+1) 0 0 1 0 f(n)
注意本题取模时可能有负数,因为这个WA了半天。。。
代码:
//POJ.2663
//Author: Prgl
#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
typedef long long ll;
typedef pair<int, int>P;
typedef vector<ll>vec;
typedef vector<vec>mat;
#define INF 0x3f3f3f3f
const double EPS = 1e-18;
const int maxn = 2e4 + 1;
ll N, MOD;
mat mul(mat& A, mat& B)
{
mat C(A.size(), vec(B[0].size()));
for (int i = 0; i < A.size(); i++)
{
for (int j = 0; j < B[0].size(); j++)
{
for (int k = 0; k < B.size(); k++)
C[i][j] += A[i][k] * B[k][j];
}
}
return C;
}
mat pow(mat A, ll n)
{
mat B(A.size(), vec(A.size()));
for (int i = 0; i < A.size(); i++)
B[i][i] = 1;
while (n > 0)
{
if (n & 1)
B = mul(A, B);
A = mul(A, A);
n >>= 1;
}
return B;
}
void solve()
{
if (N == 0)
{
cout << 1 << endl;
return;
}
if (N % 2)
{
cout << 0 << endl;
return;
}
mat A(4, vec(1));
A[0][0] = 11;
A[1][0] = 0;
A[2][0] = 3;
A[3][0] = 0;
mat T(4, vec(4));
T[0][0] = 0; T[0][1] = 4; T[0][2] = 0; T[0][3] = -1;
T[1][0] = T[2][1] = T[3][2] = 1;
if (N > 4)
{
mat B = pow(T, N - 4);
mat R = mul(B, A);
cout << R[0][0] << endl;
}
else
cout << A[4 - N][0] << endl;
}
int main()
{
IOS;
cin >> N;
while (N != -1)
{
solve();
cin >> N;
}
return 0;
}
//POJ.3420
//Author: Prgl
#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
typedef long long ll;
typedef pair<int, int>P;
typedef vector<ll>vec;
typedef vector<vec>mat;
#define F "Impossible"
#define INF 0x3f3f3f3f
const double EPS = 1e-18;
const int maxn = 2e4 + 1;
ll N, MOD;
mat mul(mat& A, mat& B)
{
mat C(A.size(), vec(B[0].size()));
for (int i = 0; i < A.size(); i++)
{
for (int j = 0; j < B[0].size(); j++)
{
for (int k = 0; k < B.size(); k++)
{
C[i][j] += A[i][k] * B[k][j] % MOD;
if (A[i][k] * B[k][j] < 0)
C[i][j] += MOD;
}
C[i][j] = C[i][j] % MOD;
if (C[i][j] % MOD < 0)
C[i][j] += MOD;
}
}
return C;
}
mat pow(mat A, ll n)
{
mat B(A.size(), vec(A.size()));
for (int i = 0; i < A.size(); i++)
B[i][i] = 1;
while (n > 0)
{
if (n & 1)
B = mul(A, B);
A = mul(A, A);
n >>= 1;
}
return B;
}
void solve()
{
mat A(4, vec(1));
A[0][0] = 36;
A[1][0] = 11;
A[2][0] = 5;
A[3][0] = 1;
mat T(4, vec(4));
T[0][0] = 1; T[0][1] = 5; T[0][2] = 1; T[0][3] = -1;
T[1][0] = T[2][1] = T[3][2] = 1;
if (N > 4)
{
mat B = pow(T, N - 4);
mat R = mul(B, A);
cout << (R[0][0] % MOD < 0 ? R[0][0] % MOD + MOD : R[0][0] % MOD) << endl;
}
else
cout << (A[4 - N][0] % MOD < 0 ? A[4 - N][0] % MOD + MOD : A[4 - N][0] % MOD) << endl;
}
int main()
{
IOS;
cin >> N >> MOD;
while (N != 0 || MOD != 0)
{
solve();
cin >> N >> MOD;
}
return 0;
}