题目链接
http://poj.org/problem?id=1679
题意
给定求一张图,判断它的最小生成树是否唯一
思路
只需求出该图的次小生成树,并且判断最小生成树和次小生成树权值和是否相同即可
那么问题就转化成了求次小生成树:先求出最小生成树,然后枚举剩下的m - n +1条边, 将其中一条边(u, v)加入MST中,这样必定u->v之间会形成回路,根据最小生成树的回路性质,回路中权值最大的那条边必定不在最小生成树中,因此我们只需删除MST中u->v权值最大的那条边,即u->v之间的最小瓶颈路
于是可以考虑预处理出任意一对结点之间的最小瓶颈路,可以知道任意一对结点u->v的最小瓶颈路就为MST上u->v的路径。因此,只需求出原图的MST,并且DFS将其转化为有根树并求任意一对结点之间的最小瓶颈路即可
代码
#include <iostream>
#include <cstring>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <sstream>
#include <iomanip>
#include <fstream>
#include <cstdio>
#include <cstdlib>
#include <climits>
#include <deque>
#include <bitset>
#include <algorithm>
using namespace std;
#define PI acos(-1.0)
#define LL long long
#define PII pair<int, int>
#define PLL pair<LL, LL>
#define mp make_pair
#define IN freopen("in.txt", "r", stdin)
#define OUT freopen("out.txt", "wb", stdout)
#define scan(x) scanf("%d", &x)
#define scan2(x, y) scanf("%d%d", &x, &y)
#define scan3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define sqr(x) (x) * (x)
#define pr(x) cout << #x << " = " << x << endl
#define lc o << 1
#define rc o << 1 | 1
#define pl() cout << endl
const int maxn = 10005;
int n, m, p[maxn], r[maxn];
bool use[maxn];
vector<PII> G[105];
struct Edge {
int u, v, w;
Edge(int a, int b, int c) : u(a), v(b), w(c) {
}
Edge() {
}
} E[maxn];
int find(int x) {
return p[x] == x ? x : p[x] = find(p[x]);
}
bool cmp(Edge x, Edge y) {
return x.w < y.w;
}
int kruskal() {
for (int i = 1; i <= n; i++) p[i] = i;
int ans = 0;
sort(E, E + m, cmp);
for (int i = 0; i < m; i++) {
int x = E[i].u, y = E[i].v;
x = find(x);
y = find(y);
if (x != y) {
ans += E[i].w;
p[x] = y;
use[i] = 1;
G[E[i].u].push_back(mp(E[i].v, E[i].w));
G[E[i].v].push_back(mp(E[i].u, E[i].w));
}
}
return ans;
}
const int maxnode = 105;
int f[maxnode][maxnode], x;
void dfs(int u, int v, int MAX, int w) {
if (v > 0) f[x][u] = max(MAX, w);
for (int i = 0; i < G[u].size(); i++) {
int son = G[u][i].first;
if (son == v) continue;
dfs(son, u, f[x][u], G[u][i].second);
}
}
int main() {
int T;
scan(T);
while (T--) {
scan2(n, m);
memset(f, 0, sizeof(f));
memset(use, 0, sizeof(use));
for (int i = 0; i < 105; i++) G[i].clear();
for (int i = 0; i < m; i++) {
int x, y, z;
scan3(E[i].u, E[i].v, E[i].w);
}
int mst = kruskal();
for (int i = 1; i <= n; i++) {
x = i;
dfs(i, -1, 0, 0);
}
bool flag = true;
for (int i = 0; i < m; i++) {
if (use[i]) continue;
int from = E[i].u, to = E[i].v;
int mst_ans = max(f[from][to], f[to][from]);
if (mst_ans == E[i].w) {
flag = false;
break;
}
}
if (!flag) puts("Not Unique!");
else printf("%d\n", mst);
}
return 0;
}