BP神经网络(python)

该博客介绍了一个使用Python实现的反向传播(BP)神经网络模型。代码中定义了创建矩阵、激活函数(sigmoid及其导数)、初始化权重、前馈传播和反向传播等功能。神经网络模型用于解决 XOR 问题,并通过训练数据进行训练,最终测试不同输入的预测输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import math
import random


def rand(a, b):
	return (b - a) * random.random() + a

def make_matrix(m, n, fill=0.0):  # 创造一个指定大小的矩阵
    mat = []
    for i in range(m):
        mat.append([fill] * n)
    return mat


def sigmoid(x):
    return 1.0 / (1.0 + math.exp(-x))

def sigmod_derivate(x):
    return x * (1 - x)



class BPnet(object):

    def setup(self, ni, nh, no):
        self.input_n = ni + 1  # 因为需要多加一个偏置神经元,提供一个可控的输入修正
        self.hidden_n = nh
        self.output_n = no
        # 初始化神经元
        self.input_cells = self.input_n * [1.0]
        self.hidden_cells = self.hidden_n * [1.0]
        self.output_cells = self.output_n * [1.0]
        # 初始化权重矩阵
        self.input_weights = make_matrix(self.input_n, self.hidden_n)
        self.output_weights = make_matrix(self.hidden_n, self.output_n)
        # 权重矩阵随机激活
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                self.input_weights[i][h] = rand(-0.2, 0.2)

        for h in range(self.hidden_n):
            for o in range(self.output_n):
                self.output_weights[h][o] = rand(-0.2, 0.2)

        # 初始化矫正矩阵
        self.input_correction = make_matrix(self.input_n, self.hidden_n)
        self.output_correction = make_matrix(self.hidden_n, self.output_n)


    def predict(self, inputs):
        # 激活输入层
        for i in range(self.input_n - 1):
            self.input_cells[i] = inputs[i]
        # 激活隐藏层
        for j in range(self.hidden_n):
            total = 0.0
            for i in range(self.input_n):
                total += self.input_cells[i] * self.input_weights[i][j]
            self.hidden_cells[j] = sigmoid(total)
        for k in range(self.output_n):
            total = 0.0
            for j in range(self.hidden_n):
                total += self.hidden_cells[j] * self.output_weights[j][k]
            self.output_cells[k] = sigmoid(total)
        return self.output_cells[:]

    def back_propagate(self, case, label, learn, correct):
        # 前馈
        self.predict(case)
        # 获取输出层误差
        output_deltas = [0.0] * self.output_n
        for o in range(self.output_n):
            error = label[o] - self.output_cells[o]
            output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
        # 获取隐藏层误差
        hidden_deltas = [0.0] * self.hidden_n
        for h in range(self.hidden_n):
            error = 0.0
            for o in range(self.output_n):
                error += output_deltas[o] * self.output_weights[h][o]
            hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
        # 更新输出权重
        for h in range(self.hidden_n):
            for o in range(self.output_n):
                # Wij=Wij+λEjOi+μCij
                change = output_deltas[o] * self.hidden_cells[h]
                self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
        # 更新输入权重
        for i in range(self.input_n):
            for h in range(self.hidden_n):
                # Wij=Wij+λEjOi+μCij
                change = hidden_deltas[h] * self.input_cells[i]
                self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
                self.input_correction[i][h] = change

        # 获取全局误差
        error = 0.0
        for o in range(len(label)):
            error += 0.5 * (label[o] - self.output_cells[o]) ** 2
        return error

    def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
        for i in range(limit):
            # if i % 1000 == 0:
            #     print("iterator: " + str(i))
            #     print(self.output_weights)
            error = 0.0
            for i in range(len(cases)):
                label = labels[i]
                case = cases[i]
                error += self.back_propagate(case, label, learn, correct)


    def test(self):
        cases = [
            [0, 0],
        [0, 1],
        [1, 0],
        [1, 1],
        ]
        labels = [[0], [1], [1], [1]]
        self.setup(2, 2, 1)  # 设置各层的神经元数量
        self.train(cases, labels, 10000, 0.5, 0.1)
        for case in cases:
            print(self.predict(case))


if __name__ == '__main__':
    net = BPnet()
    net.setup(2, 2, 1)

    cases = [
        [0, 0],
        [0, 1],
        [1, 0],
        [1, 1],
    ]
    labels = [[0], [1], [1], [1]]
    for iter in range(100000):
        for index in range(len(cases)):
            case = cases[index]
            predict = net.predict(case)
            backward = net.back_propagate(case, labels[index], 0.5, 0.1)
            if iter==0:
                print(predict)


    print(net.predict([0,0]))
    print(net.predict([0, 1]))
    print(net.predict([1, 0]))
    print(net.predict([1, 1]))

    net.test()







训练十万次的结果 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值