Problem
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Example 1:
Input: [1,3,4,2,2]
Output: 2
Example 2:
Input: [3,1,3,4,2] Output: 3
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than O(n2).
- There is only one duplicate number in the array, but it could be repeated more than once.
Code
class Solution {
public:
int cmp(vector<int>& nums, int val, int& low, int& up) {
int t = 0;
for (vector<int>::iterator it = nums.begin(); it != nums.end(); ++it) {
if (*it == val) {
t++;
} else if (*it > val) {
up++;
} else {
low++;
}
}
return t;
}
int findDuplicate(vector<int>& nums) {
int n = nums.size() - 1;
int l = 1, r = n;
while (l < r) {
int mid = (l + r) / 2, low = 0, up = 0;
int cnt = cmp(nums, mid, low, up);
if (cnt > 1) {
return mid;
}
if (low >= mid) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return l;
}
};