事件(摘录)

本文介绍了GTK中的事件处理机制,包括多种事件类型如按钮按下、滚动等,并解释了如何使用g_signal_connect函数连接回调函数到特定事件,以及回调函数的定义方式。

 除了信号机制外,还有一套 events 反映 X 事件机制。回调函数可以与这些事件连接。这些事件是:

· event
· button_press_event
· button_release_event
· scroll_event
· motion_notify_event
· delete_event
· destroy_event
· expose_event
· key_press_event
· key_release_event

· enter_notify_event
· leave_notify_event


 

· configure_event

· property_notify_event
· selection_clear_event
· selection_request_event
· selection_notify_event
· proximity_in_event
· proximity_out_event
· visibility_notify_event
· client_event
· no_expose_event
· window_state_event

为了连接一个回调函数到这些事件之一,你使用函数 g_signal_connect(),像前面介绍的一样,用上面事件名之一作为 name 参数。事件的回调函数与信号的回调函数有一点点不同:
gint callback_func( GtkWidget *widget,

                                    GdkEvent *event,
                                    gpointer callback_data );

GdkEvent 是一个 C 联合结构,它的类型依赖于上述事件中的哪个事件发生了。为了让我们得知发生了哪个事件,每个可能的类型都有一个 type 成员来反映发生的事件。事件结构的其它部分将依赖于这个事件的类型。类型的可能的值有:

GDK_NOTHING
GDK_DELETE
GDK_DESTROY
GDK_EXPOSE
GDK_MOTION_NOTIFY
GDK_BUTTON_PRESS
GDK_2BUTTON_PRESS
GDK_3BUTTON_PRESS
GDK_BUTTON_RELEASE
GDK_KEY_PRESS
GDK_KEY_RELEASE
GDK_ENTER_NOTIFY
GDK_LEAVE_NOTIFY
GDK_FOCUS_CHANGE
GDK_CONFIGURE
GDK_MAP
GDK_UNMAP
GDK_PROPERTY_NOTIFY
GDK_SELECTION_CLEAR
GDK_SELECTION_REQUEST
GDK_SELECTION_NOTIFY
GDK_PROXIMITY_IN
GDK_PROXIMITY_OUT
GDK_DRAG_ENTER
GDK_DRAG_LEAVE
GDK_DRAG_MOTION
GDK_DRAG_STATUS
GDK_DROP_START
GDK_DROP_FINISHED
GDK_CLIENT_EVENT
GDK_VISIBILITY_NOTIFY
GDK_NO_EXPOSE
GDK_SCROLL
GDK_WINDOW_STATE
GDK_SETTING
所以,连接一个回调函数到这些事件之一,我们会这样用:

g_signal_connect (G_OBJECT (button), "button_press_event",
                             G_CALLBACK (button_press_callback), NULL);

函数 button_press_callback() 应该声明为:
static gint button_press_callback( GtkWidget *widget,
                                                       GdkEventButton *event,
                                                       gpointer data );

我们可以把第二个参数类型声明为 GdkEventButton,因为我们知道哪个类型的事件会发生。这个函数的返回值指示这个事件是否应该由 GTK 事件处理机制做进一步的传播。返回 TRUE 指示这个事件已经处理了,且不应该做进一步传播。返回 FALSE 继续正常的事件处理。

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值