C2. Exam in BerSU (hard version)

本文解析了Codeforces竞赛中一道关于学生考试策略的问题,探讨了如何最小化学生考试失败人数以确保特定学生通过考试的策略。文章详细介绍了输入输出格式、示例及解题思路。

链接:https://codeforces.ml/contest/1185/problem/C2

The only difference between easy and hard versions is constraints.

If you write a solution in Python, then prefer to send it in PyPy to speed up execution time.

A session has begun at Beland State University. Many students are taking exams.

Polygraph Poligrafovich is going to examine a group of nn students. Students will take the exam one-by-one in order from 11-th to nn-th. Rules of the exam are following:

  • The ii-th student randomly chooses a ticket.
  • if this ticket is too hard to the student, he doesn't answer and goes home immediately (this process is so fast that it's considered no time elapses). This student fails the exam.
  • if the student finds the ticket easy, he spends exactly titi minutes to pass the exam. After it, he immediately gets a mark and goes home.

Students take the exam in the fixed order, one-by-one, without any interruption. At any moment of time, Polygraph Poligrafovich takes the answer from one student.

The duration of the whole exam for all students is MM minutes (maxti≤Mmaxti≤M), so students at the end of the list have a greater possibility to run out of time to pass the exam.

For each student ii, you should count the minimum possible number of students who need to fail the exam so the ii-th student has enough time to pass the exam.

For each student ii, find the answer independently. That is, if when finding the answer for the student i1i1 some student jj should leave, then while finding the answer for i2i2 (i2>i1i2>i1) the student jj student does not have to go home.

Input

The first line of the input contains two integers nn and MM (1≤n≤2⋅1051≤n≤2⋅105, 1≤M≤2⋅1071≤M≤2⋅107) — the number of students and the total duration of the exam in minutes, respectively.

The second line of the input contains nn integers titi (1≤ti≤1001≤ti≤100) — time in minutes that ii-th student spends to answer to a ticket.

It's guaranteed that all values of titi are not greater than MM.

Output

Print nn numbers: the ii-th number must be equal to the minimum number of students who have to leave the exam in order to ii-th student has enough time to pass the exam.

Examples

input

Copy

7 15
1 2 3 4 5 6 7

output

Copy

0 0 0 0 0 2 3 

input

Copy

5 100
80 40 40 40 60

output

Copy

0 1 1 2 3 

Note

The explanation for the example 1.

Please note that the sum of the first five exam times does not exceed M=15M=15 (the sum is 1+2+3+4+5=151+2+3+4+5=15). Thus, the first five students can pass the exam even if all the students before them also pass the exam. In other words, the first five numbers in the answer are 00.

In order for the 66-th student to pass the exam, it is necessary that at least 22 students must fail it before (for example, the 33-rd and 44-th, then the 66-th will finish its exam in 1+2+5+6=141+2+5+6=14 minutes, which does not exceed MM).

In order for the 77-th student to pass the exam, it is necessary that at least 33 students must fail it before (for example, the 22-nd, 55-th and 66-th, then the 77-th will finish its exam in 1+3+4+7=151+3+4+7=15 minutes, which does not exceed MM).

代码

#include<bits/stdc++.h>
using namespace std;
long long n,t,m,sum,s,k;
long long a[200001];
long long b[200001],ans[200001];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	s=0;
	for(int i=1;i<=n;i++)
	{
		s+=a[i];
		sum=s;
		for(int j=100;j>=1;j--)
		{
			if(sum<m)
			break;
			else if((sum-m)%j==0)
			{
				t=min(b[j],(sum-m)/j);
			} 
			else
			{
				t=min(b[j],(sum-m)/j+1);
			}
			sum-=t*j;
			ans[i]+=t;
		}
		b[a[i]]++;
	}
	for(int i=1;i<=n;i++)
	{
		cout<<ans[i]<<" "; 
	}
}

 

【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值