C2. Exam in BerSU (hard version)

本文解析了Codeforces竞赛中一道关于学生考试策略的问题,探讨了如何最小化学生考试失败人数以确保特定学生通过考试的策略。文章详细介绍了输入输出格式、示例及解题思路。

链接:https://codeforces.ml/contest/1185/problem/C2

The only difference between easy and hard versions is constraints.

If you write a solution in Python, then prefer to send it in PyPy to speed up execution time.

A session has begun at Beland State University. Many students are taking exams.

Polygraph Poligrafovich is going to examine a group of nn students. Students will take the exam one-by-one in order from 11-th to nn-th. Rules of the exam are following:

  • The ii-th student randomly chooses a ticket.
  • if this ticket is too hard to the student, he doesn't answer and goes home immediately (this process is so fast that it's considered no time elapses). This student fails the exam.
  • if the student finds the ticket easy, he spends exactly titi minutes to pass the exam. After it, he immediately gets a mark and goes home.

Students take the exam in the fixed order, one-by-one, without any interruption. At any moment of time, Polygraph Poligrafovich takes the answer from one student.

The duration of the whole exam for all students is MM minutes (maxti≤Mmaxti≤M), so students at the end of the list have a greater possibility to run out of time to pass the exam.

For each student ii, you should count the minimum possible number of students who need to fail the exam so the ii-th student has enough time to pass the exam.

For each student ii, find the answer independently. That is, if when finding the answer for the student i1i1 some student jj should leave, then while finding the answer for i2i2 (i2>i1i2>i1) the student jj student does not have to go home.

Input

The first line of the input contains two integers nn and MM (1≤n≤2⋅1051≤n≤2⋅105, 1≤M≤2⋅1071≤M≤2⋅107) — the number of students and the total duration of the exam in minutes, respectively.

The second line of the input contains nn integers titi (1≤ti≤1001≤ti≤100) — time in minutes that ii-th student spends to answer to a ticket.

It's guaranteed that all values of titi are not greater than MM.

Output

Print nn numbers: the ii-th number must be equal to the minimum number of students who have to leave the exam in order to ii-th student has enough time to pass the exam.

Examples

input

Copy

7 15
1 2 3 4 5 6 7

output

Copy

0 0 0 0 0 2 3 

input

Copy

5 100
80 40 40 40 60

output

Copy

0 1 1 2 3 

Note

The explanation for the example 1.

Please note that the sum of the first five exam times does not exceed M=15M=15 (the sum is 1+2+3+4+5=151+2+3+4+5=15). Thus, the first five students can pass the exam even if all the students before them also pass the exam. In other words, the first five numbers in the answer are 00.

In order for the 66-th student to pass the exam, it is necessary that at least 22 students must fail it before (for example, the 33-rd and 44-th, then the 66-th will finish its exam in 1+2+5+6=141+2+5+6=14 minutes, which does not exceed MM).

In order for the 77-th student to pass the exam, it is necessary that at least 33 students must fail it before (for example, the 22-nd, 55-th and 66-th, then the 77-th will finish its exam in 1+3+4+7=151+3+4+7=15 minutes, which does not exceed MM).

代码

#include<bits/stdc++.h>
using namespace std;
long long n,t,m,sum,s,k;
long long a[200001];
long long b[200001],ans[200001];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	s=0;
	for(int i=1;i<=n;i++)
	{
		s+=a[i];
		sum=s;
		for(int j=100;j>=1;j--)
		{
			if(sum<m)
			break;
			else if((sum-m)%j==0)
			{
				t=min(b[j],(sum-m)/j);
			} 
			else
			{
				t=min(b[j],(sum-m)/j+1);
			}
			sum-=t*j;
			ans[i]+=t;
		}
		b[a[i]]++;
	}
	for(int i=1;i<=n;i++)
	{
		cout<<ans[i]<<" "; 
	}
}

 

独立储能的现货电能量与调频辅助服务市场出清协调机制(Matlab代码实现)内容概要:本文围绕“独立储能的现货电能量与调频辅助服务市场出清协调机制”展开,提出了一种基于Matlab代码实现的优化模型,旨在协调独立储能系统在电力现货市场与调频辅助服务市场中的联合出清问题。文中结合鲁棒优化、大M法和C&CG算法处理不确定性因素,构建了多市场耦合的双层或两阶段优化框架,实现了储能资源在能量市场和辅助服务市场间的最优分配。研究涵盖了市场出清机制设计、储能运行策略建模、不确定性建模及求解算法实现,并通过Matlab仿真验证了所提方法的有效性和经济性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事电力市场、储能调度相关工作的工程技术人员。; 使用场景及目标:①用于研究独立储能在多电力市场环境下的协同优化运行机制;②支撑电力市场机制设计、储能参与市场的竞价策略分析及政策仿真;③为学术论文复现、课题研究和技术开发提供可运行的代码参考。; 阅读建议:建议读者结合文档中提供的Matlab代码与算法原理同步学习,重点关注模型构建逻辑、不确定性处理方式及C&CG算法的具体实现步骤,宜在掌握基础优化理论的前提下进行深入研读与仿真调试。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值