Algebraic Systems

Default

1, S S S represents a non-empty set.

Group

Semi-group

Definition:

< S , ⋆ > <S,\star> <S,> is a semi-group, if a ⋆ b ⋆ c = a ⋆ ( b ⋆ c ) a\star b\star c=a\star(b\star c) abc=a(bc).

Definition Of Group:

A semi-group < S , ⋆ > <S,\star> <S,> is a group, if following conditions are satisfied:

1, ∀ a ∈ F , ∃ e ∈ F ,   s . t .   e ⋆ a = a ⋆ e = a \forall a\in F,\exist e\in F,\ s.t.\ e\star a=a\star e=a aF,eF, s.t. ea=ae=a.

In other words, there exists an identity element in S S S.

2, ∀ a ∈ F , ∃ b ∈ F ,   s . t .   a ⋆ b = b ⋆ a = e \forall a\in F,\exist b\in F,\ s.t.\ a\star b=b\star a=e aF,bF, s.t. ab=ba=e.

In other words, there exists inverse elements of any elements in S S S.

What’s more, a group is a commutative group, also Abelian group, if a ⋆ b = b ⋆ a a\star b=b\star a ab=ba.


Examples:

1, Invertible matrices make up a group of addition and multiplication.

2, Unit roots of n n n-degree make up a commutative group of multiplication.

Ring

Definition:

< S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is a ring, if following conditions are satisfied:

1, < S , ⋆ 1 > <S,\star_1> <S,1> is a commutative group.

2, < S , ⋆ 2 > <S,\star_2> <S,2> is a semi-group.

3, a ⋆ 2 ( b ⋆ 1 c ) = ( a ⋆ 2 b ) ⋆ 1 ( a ⋆ 2 c ) ,   ( b ⋆ 1 c ) ⋆ 2 a = ( b ⋆ 2 a ) ⋆ 1 ( c ⋆ 2 a ) a\star_2(b\star_1c)=(a\star_2b)\star_1(a\star_2c),\ (b\star_1c)\star_2a=(b\star_2a)\star_1(c\star_2a) a2(b1c)=(a2b)1(a2c), (b1c)2a=(b2a)1(c2a).

Additionally, if a ⋆ 2 b = b ⋆ 2 a a\star_2b=b\star_2a a2b=b2a, then < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is called a commutative ring.


If ∃ b ≠ 0 ,   s . t .   a b = 0 ( b a = 0 ) \exist b\neq0,\ s.t.\ ab=0(ba=0) b=0, s.t. ab=0(ba=0), then a a a is called a left(right) zero divisor.

Only 0 0 0 is both left and right zero divisor, called trivial zero divisor.

Others are non-trivial zero divisors.

If a ring has no non-trivial zero divisor, then it’s a ring without zero divisor.

Unitary Ring

Definition:

A ring < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is a unitary ring, if it has identity element of ⋆ 2 \star_2 2.

Domain

A unitary, commutative ring is an (integral) domain, if it has no non-trivial zero divisor.

Ideal

Definition:

A ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>.

A sub-ring A A A of < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2> is a left(right) ideal of R R R, if ∀ x ∈ A , ∀ r ∈ R ,   s . t .   r x ∈ A ( x r ∈ A ) \forall x\in A,\forall r\in R,\ s.t.\ rx\in A(xr\in A) xA,rR, s.t. rxA(xrA), set down as A ⊲ R A\lhd R AR.

Then you can intuit what is two-sided ideal.

It is a proper ideal, if x ↦ r x ( x r ) x\mapsto rx(xr) xrx(xr) is not a surjection.

Principal Ideal

∀ a ∈ R , Σ = { I ⊲ R ∣ a ∈ R } . \forall a\in R,\Sigma=\{I\lhd R|a\in R\}. aR,Σ={IRaR}.

Set down ∩ I ∈ Σ I \mathop\cap\limits_{I\in\Sigma}I IΣI as < a > <a> <a>; that is the principal ideal of R R R generated by a a a.

Sub-ring

Definition:

If non-empty S 1 ∈ S S_1\in S S1S is a ring considering the addition and mutiplication in S S S, then it is called a sub-ring of S S S.

There is a equivalent statement: A sub-ring is a sub-set which is closed with subtraction and mutiplication of S S S. For subtraction can ensure the existence of zero element and inverse elements.

Unit Group

Definition:

A unitary ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>.

< { x ∣ x ∈ R , x  is invertible } , ⋆ 2 > <\{x|x\in R,x\text{ is invertible}\},\star_2> <{xxR,x is invertible},2> is a group, called the unit group of < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>, set down as U ( R ) U(R) U(R).

Elements in U ( R ) U(R) U(R) are called units.


Examples:

U ( M n ( F ) ) = G L n ( F ) = { invertible matrices } . U(M_n(F))=GL_n(F)=\{\text{invertible matrices}\}. U(Mn(F))=GLn(F)={invertible matrices}.

Division Ring

Definition:

A unitary ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2> is a division ring, if R / { the identity element of  ⋆ 1 } = U ( R ) R/\{\text{the identity element of }\star_1\}=U(R) R/{the identity element of 1}=U(R).

If you don’t exclude the identity element of ⋆ 1 \star_1 1, you will end up having contradiction.

Field

Definition:

A commutative division ring < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is called a field.


A field F F F.

Mappings from S S S to F F F are called F F F-value functions at S S S.

They form a linear space, set down as F S F^S FS.

Algebra

Definition:

< S , + , × > <S,+,\times> <S,+,×> is a unitary ring and < S , + , ⋅ > <S,+,\cdot> <S,+,>, where dot means scalar product on field F F F, is a linear space.

Then < S , + , × , ⋅ > <S,+,\times,\cdot> <S,+,×,> is an algebra on F F F.

The dimension of this linear space is defined as the dimension of the algebra.

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值