提示:DDU,供自己复习使用。欢迎大家前来讨论~
文章目录
二叉树 Part05
二、题目
题目一:235.二叉搜索树的最近公共祖先
解题思路:
利用二叉搜索树的有序性,可以确定搜索的方向。
如果根节点的值大于两个节点的值,则在左子树中搜索。反之,在右子树中搜索。
那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是p 和 q的公共祖先。
Q1.一定是最近公共祖先吗?
我们从根节点搜索,第一次遇到 cur节点是数值在[q, p]区间中,即 节点5,此时可以说明 q 和 p 一定分别存在于 节点 5的左子树,和右子树中。

此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为p的祖先, 如果从节点5继续向右遍历则错过成为q的祖先。所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[q, p]区间中,那么cur就是 q和p的最近公共祖先。
递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序就无所谓了)。
如图所示:p为节点6,q为节点9

可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!
递归法
本题是二叉搜索树,二叉搜索树是有序的,好好利用这个特点。
递归三部曲如下:
-
确定递归函数的返回值和参数
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q)
-
确定终止条件
遇到空返回就可以了,代码如下:
if (cur == NULL) return cur;
其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。
-
确定单层循环逻辑
在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭右闭)
- 那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。
- 如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历(目标区间在右子树)。
- 剩下的情况,就是cur节点在区间(p->val <= cur->val && cur->val <= q->val)或者 (q->val <= cur->val && cur->val <= p->val)中,那么cur就是最近公共祖先了,直接返回cur。
需要注意的是此时不知道p和q谁大,所以两个都要判断
if (cur->val > p->val && cur->val > q->val) { TreeNode* left = traversal(cur->left, p, q); if (left != NULL) { return left; } }
区别:
在这里调用递归函数的地方,把递归函数的返回值left,直接return。
而在二叉树最近公共祖先的处理中:如果递归函数有返回值,如何区分要搜索一条边,还是搜索整个树。
本题就是标准的搜索一条边的写法,遇到递归函数的返回值,如果不为空,立刻返回。
完整代码如下:
class Solution {
private:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
if (cur == NULL) return cur;
// 中
if (cur->val > p->val && cur->val > q->val) { // 左
TreeNode* left = traversal(cur->left, p, q);
if (left != NULL) {
return left;
}
}
if (cur->val < p->val && cur->val < q->val) { // 右
TreeNode* right = traversal(cur->right, p, q);
if (right != NULL) {
return right;
}
}
return cur;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root, p, q);
}
};
精简之后的代码:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root->val > p->val && root->val > q->val) {
return lowestCommonAncestor(root->left, p, q);
} else if (root->val < p->val && root->val < q->val) {
return lowestCommonAncestor(root->right, p, q);
} else return root;
}
};
迭代法
对于二叉搜索树的迭代法,我们应该在二叉树:二叉搜索树登场! (opens new window)就了解了。
利用其有序性,迭代的方式还是比较简单的,解题思路和在递归中是一致的。
迭代代码如下:(又是被迭代法简单到的一天)
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while(root) {
if (root->val > p->val && root->val > q->val) {
root = root->left;
} else if (root->val < p->val && root->val < q->val) {
root = root->right;
} else return root;
}
return NULL;
}
};
小结:
对于二叉搜索树的最近祖先问题,其实要比普通的二叉树的最近公共祖先简单的多。
使用回溯,二叉搜索树自带方向性,可以方便的从上向下查找目标区间,遇到目标区间内的节点,直接返回。
最后给出了对应的迭代法,二叉搜索树的迭代法甚至比递归更容易理解,也是因为其有序性(自带方向性),按照目标区间找就行了。
题目二:701.二叉搜索树中的插入操作
解题思路
找插入的位置,即叶子节点所在位置,所以在查找到是空节点是进行插入操作。
这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。其实**可以不考虑题目中提示所说的改变树的结构的插入方式。**可以用更简单、更直接的方法来解决问题,而不需要对树进行复杂的改变。
如下演示视频中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。
递归法:
-
确定递归函数的返回值和参数
TreeNode* insert(TreeNode* root, int val)
-
确定终止条件
终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。
if (root == NULL) { TreeNode* node = new TreeNode(val); return node; }
这里把添加的节点返回给上一层,就完成了父子节点的赋值操作了,详细再往下看。
-
确定单层递归的逻辑
Q:此时要明确,需要遍历整棵树么?
别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱。
搜索树是有方向了,可以根据插入元素的数值,决定递归方向。
-
if (root->val > val) root->left = insertIntoBST(root->left, val); if (root->val < val) root->right = insertIntoBST(root->right, val); return root;
如何通过递归函数返回值完成了新加入节点的父子关系赋值操作了,下一层将加入节点返回,本层用root->left或者root->right将其接住。
整体C++代码如下:
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
==递归函数不用返回值==也可以,找到插入的节点位置,直接让其父节点指向插入节点,结束递归,也是可以的。
那么递归函数定义如下:
TreeNode* parent; // 记录遍历节点的父节点
void traversal(TreeNode* cur, int val)
没有返回值,需要记录上一个节点(parent),遇到空节点了,就让parent左孩子或者右孩子指向新插入的节点。然后结束递归。
代码如下:
class Solution {
private:
TreeNode* parent;
void traversal(TreeNode* cur, int val) {
if (cur == NULL) {
TreeNode* node = new TreeNode(val);
if (val > parent->val) parent->right = node;
else parent->left = node;
return;
}
parent = cur;
if (cur->val > val) traversal(cur->left, val);
if (cur->val < val) traversal(cur->right, val);
return;
}
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
parent = new TreeNode(0);
if (root == NULL) {
root = new TreeNode(val);
}
traversal(root, val);
return root;
}
};
可以看出还是麻烦一些的。
举这个例子,是想说明通过递归函数的返回值完成父子节点的赋值是可以带来便利的。
网上千篇一律的代码,可能会误导大家认为通过递归函数返回节点 这样的写法是天经地义,其实这里是有优化的!
if (pre == NULL) { // 第一个节点
count = 1; // 频率为1
} else if (pre->val == cur->val) { // 与前一个节点数值相同
count++;
} else { // 与前一个节点数值不同
count = 1;
}
pre = cur; // 更新上一个节点
迭代法:
在迭代法遍历的过程中,需要记录一下当前遍历的节点的父节点,这样才能做插入节点的操作。
用了记录pre和cur两个指针的技巧,本题也是一样的。
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
TreeNode* cur = root;
TreeNode* parent = root; // 这个很重要,需要记录上一个节点,否则无法赋值新节点
while (cur != NULL) {
parent = cur;
if (cur->val > val) cur = cur->left;
else cur = cur->right;
}
TreeNode* node = new TreeNode(val);
if (val < parent->val) parent->left = node;// 此时是用parent节点的进行赋值
else parent->right = node;
return root;
}
};
小结:
- 在二叉搜索树中的插入操作,不用恐惧其重构搜索树,其实根本不用重构。
- 然后在递归中,我们重点讲了如何通过递归函数的返回值完成新加入节点和其父节点的赋值操作,并强调了搜索树的有序性。
最后依然给出了迭代的方法,迭代的方法就需要记录当前遍历节点的父节点了,这个和没有返回值的递归函数实现的代码逻辑是一样的。
题目三: 450.删除二叉搜索树中的节点
解题思路:
- 搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑
- 说到递归函数的返回值,可以通过递归返回值来加入新节点, 也可以通过递归返回值删除节点。
递归
递归三部曲:
-
确定递归函数参数以及返回值
TreeNode* deleteNode(TreeNode* root, int key)
-
确定终止条件:遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了
if (root == nullptr) return root;
-
确定单层递归的逻辑
这里就把二叉搜索树中删除节点遇到的情况都搞清楚。
共有以下五种情况:
-
第一类:没找到删除的节点.
- (1) 遍历到空节点直接返回了
-
第二类:找到删除的节点
- (2) 左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
- (3) 删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
- (4) 删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
- (5) 左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
第五种情况有点难以理解,看下面动画:
-
if (root->val == key) { // 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点 // 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点 if (root->left == nullptr) return root->right; // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点 else if (root->right == nullptr) return root->left; // 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置 // 并返回删除节点右孩子为新的根节点。 else { TreeNode* cur = root->right; // 找右子树最左面的节点 while(cur->left != nullptr) { cur = cur->left; } cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置 TreeNode* tmp = root; // 把root节点保存一下,下面来删除 root = root->right; // 返回旧root的右孩子作为新root delete tmp; // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧) return root; } }
这里相当于把新的节点返回给上一层,上一层就要用 root->left 或者 root->right接住,代码如下:
-
if (root->val > key) root->left = deleteNode(root->left, key); if (root->val < key) root->right = deleteNode(root->right, key); return root;
-
完整代码如下:(第五种情况,左右都不为空的情况下是==递归中加入了迭代的处理==)
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
if (root->val == key) {
// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
if (root->left == nullptr && root->right == nullptr) {
///! 内存释放
delete root;
return nullptr;
}
// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
else if (root->left == nullptr) {
auto retNode = root->right;
///! 内存释放
delete root;
return retNode;
}
// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
else if (root->right == nullptr) {
auto retNode = root->left;
///! 内存释放
delete root;
return retNode;
}
// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
// 并返回删除节点右孩子为新的根节点。
else {
TreeNode* cur = root->right; // 找右子树最左面的节点
while(cur->left != nullptr) {
cur = cur->left;
}
cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
TreeNode* tmp = root; // 把root节点保存一下,下面来删除
root = root->right; // 返回旧root的右孩子作为新root
delete tmp; // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
return root;
}
}
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;
}
};
普通二叉树的删除方式
介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。
代码中目标节点(要删除的节点)被操作了两次:
-
第一次是和目标节点的右子树最左面节点交换。
-
第二次直接被NULL覆盖了。
-
class Solution { public: TreeNode* deleteNode(TreeNode* root, int key) { if (root == nullptr) return root; if (root->val == key) { if (root->right == nullptr) { // 这里第二次操作目标值:最终删除的作用 return root->left; } TreeNode *cur = root->right; while (cur->left) { cur = cur->left; } swap(root->val, cur->val); // 这里第一次操作目标值:交换目标值其右子树最左面节点。 } root->left = deleteNode(root->left, key); root->right = deleteNode(root->right, key); return root; } };
这个代码是简短一些,思路也巧妙,但是不太好想,实操性不强,推荐第一种写法!
迭代法
删除节点的迭代法还是复杂一些的,但其本质在递归法里都介绍了,最关键就是删除节点的操作(动画模拟的过程)
整体代码如下:
class Solution { private: // 将目标节点(删除节点)的左子树放到 目标节点的右子树的最左面节点的左孩子位置上 // 并返回目标节点右孩子为新的根节点 // 是动画里模拟的过程 TreeNode* deleteOneNode(TreeNode* target) { if (target == nullptr) return target; if (target->right == nullptr) return target->left; TreeNode* cur = target->right; while (cur->left) { cur = cur->left; } cur->left = target->left; return target->right; } public: TreeNode* deleteNode(TreeNode* root, int key) { if (root == nullptr) return root; TreeNode* cur = root; TreeNode* pre = nullptr; // 记录cur的父节点,用来删除cur while (cur) { if (cur->val == key) break; pre = cur; if (cur->val > key) cur = cur->left; else cur = cur->right; } if (pre == nullptr) { // 如果搜索树只有头结点 return deleteOneNode(cur); } // pre 要知道是删左孩子还是右孩子 if (pre->left && pre->left->val == key) { pre->left = deleteOneNode(cur); } if (pre->right && pre->right->val == key) { pre->right = deleteOneNode(cur); } return root; } };
小结:
- 删除节点的复杂性:与添加节点相比,删除节点在二叉搜索树中更为复杂,因为需要调整树的结构。
- 递归删除操作:作者提到使用递归函数来删除节点,并强调了第五种情况(即要删除的节点左右孩子都不为空)的重要性,这是删除操作中最关键的逻辑。
总结
- 二叉树的插入和删除操作。
- 递归和迭代的解法