King's Order hdu 5642

King's Order

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 822    Accepted Submission(s): 451


Problem Description
After the king's speech , everyone is encouraged. But the war is not over. The king needs to give orders from time to time. But sometimes he can not speak things well. So in his order there are some ones like this: "Let the group-p-p three come to me". As you can see letter 'p' repeats for 3 times. Poor king!

Now , it is war time , because of the spies from enemies , sometimes it is pretty hard for the general to tell which orders come from the king. But fortunately the general know how the king speaks: the king never repeats a letter for more than 3 times continually .And only this kind of order is legal. For example , the order: "Let the group-p-p-p three come to me" can never come from the king. While the order:" Let the group-p three come to me" is a legal statement.

The general wants to know how many legal orders that has the length of n

To make it simple , only lower case English Letters can appear in king's order , and please output the answer modulo 1000000007

We regard two strings are the same if and only if each charactor is the same place of these two strings are the same.
 

Input
The first line contains a number T(T10) ——The number of the testcases.

For each testcase, the first line and the only line contains a positive number n(n2000) .
 

Output
For each testcase, print a single number as the answer.
 

Sample Input
  
2 2 4
 

Sample Output
  
676 456950 hint: All the order that has length 2 are legal. So the answer is 26*26. For the order that has length 4. The illegal order are : "aaaa" , "bbbb"…….."zzzz" 26 orders in total. So the answer for n == 4 is 26^4-26 = 456950
 


数组中的三列数分别代表开头(末尾)是一个连续的字母,两个连续的字母和三个连续的字母的排列方法,
画个图,自己推推就发现规律了.
#include <iostream>
#include <stdio.h>
#include <memory.h>
#define mod 1000000007
#define ll long long
using namespace std;

ll data[2005][4];

void dp()
{
    memset(data,0,sizeof(data));
    data[1][1]=26;
    for(int i=1;i<=2000;i++)
    {
        for(int j=1;j<=3;j++)
        {
            if(data[i][j])
            {
                if(j!=3)
                    data[i+1][j+1]=data[i][j];
                data[i+1][1]=(data[i+1][1]+data[i][j]*25)%mod;
            }
<span style="white-space:pre">	</span>}
    }
    //for(int i=1;i<=2000;i++){for(int j=0;j<3;j++)printf("%lld   ",data[i][j]);printf("\n");}
}

int main()
{
    int T,n;
    ll ans;
    dp();
    cin>>T;
    for(int i=0;i<T;i++)
    {
        cin>>n;
        ans=0;
        for(int j=1;j<=3;j++)
            ans=(ans+data[n][j])%mod;
        cout<<ans<<endl;
    }
    return 0;
}



 
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值