January 10 2007 水曜日

本文深入探讨了Y组合器的工作原理,通过具体的实现代码解释了如何使用Y组合器来分离固定点代码与递归代码,同时提供了阶乘和求最大值的实际例子。

  Yesterday evening I searched some articles on Y-combinator.  That is a so interesting and powerful combinator.
I think that what is the essence of Y-combinator is that it can make a call itself.  It has a parameter which is
just used to represent itself.  Are you puzzled?  OK. Let's look at its a implementation.

(define Y
  (lambda (x)
    ((lambda (maker)
       (x (lambda (arg) ((maker maker) arg))))
     (lambda (maker)
       (x (lambda (arg) ((maker maker) arg)))))))

  Here!

(lambda (maker)
  ...
  ((maker maker) ...))

  From above simplified code, what we can discover?  The code will trap into a infinite loop if running.  Yes,
very good.  Why there are two (lambda (maker) ...) in the body of "Y".  In actual fact, the two lambda express
is same to ((maker maker) ...), except that they are anonymous.  Their main task is to launch the infinite loop.
The first (lambda (maker) ...) is the former of the second; the second is the latter of the first.  Therefore,
the second will produce its latter by itself.  So, that is a infinite sequence.

  The (lambda (arg) ...) is also important.  Let's look at another example.

(define F*
  (lambda (func-arg)
    (lambda (n)
      (if (= n 0) 1
          (* n (func-arg (- n 1)))))))

((Y F*) 5) => 120

  The "F*" get a function as its argument.  So, (lambda (arg) ...) pass into the "F*".  In sense, the "F*" made
a fixpoint as its return value.  The "func-arg" represent a recursion (or loop) engine.

So, why we say that the Y-combinator is powerful?  It make us separate the code of a fixpoint and the code of
recursion when coding; it also combine they when running.

  Let's step into the ((Y F*) 5).  Firstly, let's discover what result (Y F*) make.  The "F*" is a lambda express.
So, (Y F*) is like the following code.

  ((lambda (maker)
       (F* (lambda (arg) ((maker maker) arg))))
   (lambda (maker)
       (F* (lambda (arg) ((maker maker) arg)))))

  Let's use "A" represent (lambda (maker) (F* (lambda (arg) ((maker maker) arg)))) for help our analysing.  All
right, we can get that code.

  ((lambda (maker)
       (F* (lambda (arg) ((A A) arg))))
   A))

  The simplified code, we found (A A) is embeded in a lambda express, (lambda (arg) ((A A) arg)).  At that point,
the infinite recursion is not produced at once.  Yes, it is delayed due to that lambda experss.  You can call up
how to implement a "delay" form.:-)  OK. Let's go on.

  Due to that lambda embracing (A A) the "F*" can get a lambda express as its argument.  It is time to get the "F*"
inside.  The "F*" also return a lambda express, which must be launched by giving a number.  So, the "F*" return a
lambda express like that.

(lambda (n)
      (if (= n 0) 1
          (* n ((lambda (arg) ((A A) arg) (- n 1)))))

  Let's go back the ((Y F*) 5).  It is same to the following code.

((lambda (n)
      (if (= n 0) 1
          (* n ((lambda (arg) ((A A) arg) (- n 1))))) 5)

  Evaluating this express will result in a recursion because the "n" is 5.  So, it cause that.

(* 5 ((lambda (arg) ((A A) arg) (- 5 1)))))

((A A) 4)

  The (A A) result in (F* (lambda (arg) ((A A) arg))) again.  So, we can know the followning code.

(* 4 ((lambda (arg) ((A A) arg) (- 4 1)))))

  Again ang again.  Before launching the next recursion, the fixpoint function test whether the "n"
is 0, if true stop recursion and return 1; otherwise, it have to launch a recursive call again.

  It result in a recursive calling chain, which just find its fixpoint.  Returning from the fixpoint,
it actually work out the result of factoral.

  OK.  Now we can write a function in Y-combinator to find a maximum from a list of number.

(define M*
  (lambda (f)
    (lambda (ls)
      (if (null? (cdr ls)) (car ls)
          (max (car ls) (f (cdr ls))))))) 

下载方式:https://pan.quark.cn/s/b4d8292ba69a 在构建食品品牌的市场整合营销推广方案时,我们必须首先深入探究品牌的由来、顾客的感知以及市场环境。 此案例聚焦于一款名为“某饼干产品”的食品,该产品自1998年进入河南市场以来,经历了销售业绩的波动。 1999至2000年期间,其销售额取得了明显的上升,然而到了2001年则出现了下滑。 在先前的宣传活动中,品牌主要借助大型互动活动如ROAD SHOW来吸引顾客,但收效甚微,这揭示了宣传信息与顾客实际认同感之间的偏差。 通过市场环境剖析,我们了解到消费者对“3+2”苏打夹心饼干的印象是美味、时尚且充满活力,但同时亦存在口感腻、价位偏高、饼身坚硬等负面评价。 实际上,该产品可以塑造为兼具美味、深度与创新性的休闲食品,适宜在多种情境下分享。 这暗示着品牌需更精确地传递产品特性,同时消解消费者的顾虑。 在策略制定上,我们可考虑将新产品与原有的3+2苏打夹心进行协同推广。 这种策略的长处在于能够借助既有产品的声誉和市场占有率,同时通过新产品的加入,刷新品牌形象,吸引更多元化的消费群体。 然而,这也可能引发一些难题,例如如何合理分配新旧产品间的资源,以及如何保障新产品的独特性和吸引力不被既有产品所掩盖。 为了提升推广成效,品牌可以实施以下举措:1. **定位修正**:基于消费者反馈,重新确立产品定位,突出其美味、创新与共享的特性,减少消费者感知的缺陷。 2. **创新宣传**:宣传信息应与消费者的实际体验相契合,运用更具魅力的创意手段,例如叙事式营销,让消费者体会到产品带来的愉悦和情感共鸣。 3. **渠道选择**:在目标消费者常去的场所开展活动,例如商业中心、影院或在线平台,以提高知名度和参与度。 4. **媒体联...
### USACO 2025 January Contest Information and Problems For individuals interested in participating or learning about the USA Computing Olympiad (USACO) contests, it's important to understand that specific details regarding future events like the USACO 2025 January contest are not yet available as of now. However, based on previous patterns observed in past competitions such as those mentioned in earlier years[^1], some general expectations can be outlined. #### General Structure of USACO Contests Contests typically consist of several problems categorized by difficulty levels—Bronze, Silver, Gold, and Platinum. Participants solve algorithmic challenges within a limited timeframe using programming languages including C++, Java, Python among others. The exact nature of these questions varies widely but often involves complex algorithms and data structures designed to test both coding skills and problem-solving abilities. #### Preparing for Future Competitions To prepare effectively for upcoming contests similar to what might appear in 2025: - **Practice Regularly**: Engage actively with practice problems from previous contests which cover various topics ranging from basic sorting techniques to advanced graph theory concepts. - **Understand Algorithms & Data Structures**: Deepen knowledge around key areas frequently tested during these exams; this includes dynamic programming, greedy strategies, depth-first search (DFS), breadth-first search (BFS), etc.[^3] - **Participate in Mock Tests**: Join mock testing sessions offered through official platforms or community-driven initiatives where participants attempt solving under exam conditions. Here’s an example code snippet demonstrating how one could approach implementing DFS—a common technique used across many competitive programming tasks: ```cpp void dfs(int node, vector<bool>& visited, const vector<vector<int>>& adjList){ cout << "Visiting Node: " << node << endl; visited[node] = true; // Traverse all adjacent nodes recursively if they haven't been visited already for(auto neighbor : adjList[node]){ if(!visited[neighbor]) dfs(neighbor, visited, adjList); } } ``` --related questions-- 1. What resources exist specifically tailored towards preparing for USACO? 2. How does understanding different types of graphs benefit performance in computational olympiads? 3. Can you provide examples of other international computing olympiads comparable to USACO? 4. In terms of time management, what tips would help maximize efficiency while attempting multiple challenging problems simultaneously?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值