ZOJ Problem Set - 3609
The modular modular multiplicative inverse of an integer a modulo
m is an integer x such that a-1≡x (modm)
. This is equivalent to
ax≡1 (modm)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3 3 11 4 12 5 13
Sample Output
4 Not Exist 8
References#include <cstdio>
int exgcd(int a, int b, int &x, int &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int gcd = exgcd(b, a % b, x, y);
int tmp = x;
x = y;
y = tmp - a / b * y;
return gcd;
}
int main() {
int T;
int a, b, x, y;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &a, &b);
int gcd = exgcd(a, b, x, y);
if (gcd != 1)
puts("Not Exist");
else {
x = (x % b + b) % b;
if (x == 0)
x = 1;
printf("%d\n", x);
}
}
return 0;
}
#include <cstdio>
int exgcd(int a, int b, int &x, int &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int gcd = exgcd(b, a % b, x, y);
int tmp = x;
x = y;
y = tmp - a / b * y;
return gcd;
}
int main() {
int T;
int a, b, x, y;
scanf("%d", &T);
while (T--) {
scanf("%d%d", &a, &b);
int gcd = exgcd(a, b, x, y);
if (gcd != 1)
puts("Not Exist");
else {
x = (x % b + b) % b;
if (x == 0)
x = 1;
printf("%d\n", x);
}
}
return 0;
}