ZOJ 3609 Modular Inverse

本文介绍了一种求解模逆元的算法,通过扩展欧几里得算法找到满足 a * x ≡ 1 (mod m) 的最小正整数 x。文章详细解释了输入输出格式,并提供了一个 C++ 示例程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ZOJ Problem Set - 3609
Modular Inverse

Time Limit: 2 Seconds      Memory Limit: 65536 KB

The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (modm). This is equivalent to ax≡1 (modm).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
References
#include <cstdio>

int exgcd(int a, int b, int &x, int &y) {
	if (b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	
	int gcd = exgcd(b, a % b, x, y);
	int tmp = x;
	x = y;
	y = tmp - a / b * y;
	return gcd;
}

int main() {
	int T;
	int a, b, x, y;

	scanf("%d", &T);

	while (T--) {
		scanf("%d%d", &a, &b);

		int gcd = exgcd(a, b, x, y);

		if (gcd != 1)
			puts("Not Exist");
		else {
			x = (x % b + b) % b;
			if (x == 0)
				x = 1;
			printf("%d\n", x);
		}
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值