POJ 3264 Balanced Lineup

本文介绍了一道关于计算区间最大值与最小值之差的平衡阵容问题,并提供了一个使用ST表解决该问题的代码实例。通过预先计算区间最大最小值,实现快速查询。

Balanced Lineup
Time Limit: 5000MS Memory Limit: 65536K
Case Time Limit: 2000MS
Description

For the daily milking, Farmer John’s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
题目翻译:
平衡的阵容
题目描述:
给你一个有n个数的序列,有Q次询问,每次询问给定一个区间[l,r],求第l个数到第r个数的区间最大值减去区间最小值。

ST表裸题,我就来扔个板子= =。

#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=50000+500;
int num[maxn];
int st[maxn][30];
int st1[maxn][30];
int n;
void ST()
{
    for(int i=1;i<=n;i++)
        st[i][0]=st1[i][0]=num[i];
    int k=(log(n)/log(2));
    for(int j=1;j<=k;j++)
    {
        for(int i=1;i<=n;i++)
        {
            if(i+(1<<(j-1))<=n)
            {
                st[i][j]=max(st[i][j-1],st[i+(1<<(j-1))][j-1]);
                st1[i][j]=min(st1[i][j-1],st1[i+(1<<(j-1))][j-1]);
            }
        }
    }
}
int ask_max(int x,int y)
{
    int k=log(y-x+1)/log(2);
    return max(st[x][k],st[y-(1<<k)+1][k]);
}
int ask_min(int x,int y)
{
    int k=log(y-x+1)/log(2);
    return min(st1[x][k],st1[y-(1<<k)+1][k]);
}
int main()
{
    int q;
    scanf("%d%d",&n,&q);
    for(int i=1;i<=n;i++)
        scanf("%d",&num[i]);
    ST(); 
    while(q--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        printf("%d\n",ask_max(a,b)-ask_min(a,b)); 
    }
    return 0;
}
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值