Handler流程分析
第一步:初始化Handler
private Handler mHandler=new Handler(){
@Override
public void handleMessage(@NonNull Message msg) {
super.handleMessage(msg);
}
};
这个是new了一个对象,实例化了Handler,我们再看构造函数里面的实现:
public Handler() {
//这里注意传入的CallBack为NULL
this(null, false);
}
public Handler(@Nullable Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//这个获取当前Handler对应的Looper对象
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
//这个对象是MessageQueue消息队列对象
mQueue = mLooper.mQueue;
//这里的值为NULL
mCallback = callback;
//这里的值为false
mAsynchronous = async;
}
由上面的代码,我们可知主要Handler得到了Looper对象和消息队列MessageQueue对象,然而我们先深入到Looper.myLooper();中,再看看:
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
由此可见Looper存储在ThreadLocal中,这个类是多线程里面用到的函数,主要是用来线程数据隔离,这里也是为了确保Looper的唯一性,那ThreadLocal又在那初始化的呢?我们再看一下代码:
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
由上面的代码可知,ThreadLocal被定义了全局静态变量,而且也是在函数prepare里面初始化Looper并存储在ThreadLocal中的,而prepare()又是在哪被调用的呢?一步一步回调,看上一层代码,我们会发现,他是在ActivityThread的Handler里面初始化的,如下:
case BIND_APPLICATION:
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "bindApplication");
AppBindData data = (AppBindData)msg.obj;
handleBindApplication(data);
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
break;
ActivityThread里面也创建了个Handler去处理各种事务,由此可见Handler在源码里的重要性,我们在往上一层就可以发现,BIND_APPLICATION是由ApplicationThread发送的消息,也就是当我们Application也就是应用打开时会初始化Looper。
Handler初始化到这里也就结束了,由上面我们可以总结,在主线程中只有一个唯一的looper供我们去使用,也就是共享了looper。
接着我们再去看看从发送消息到处理消息的流程。
第二步:发送消息
发送消息的函数,Handler中有好几个,例如:
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis)
public final boolean sendMessage(@NonNull Message msg)
public final boolean sendEmptyMessage(int what)
但是最终他们都会调用下面这个方法:
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
由上面可知,Handler发送消息是发送到消息队列里的,也就是MessageQueue,我们再看看queue.enqueueMessage(msg, uptimeMillis)这个函数是怎么处理消息的,如下:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
synchronized (this) {
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
//wen:插入时间,也就是发送消息的时间
//当时间越小消息就先被处理
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
//赋值给全局变量Message
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
由上面的代码可见,Message消息最终还是保存在消息队列MessageQueue对象中,而Message Queue的初始化是在Looper里面初始化的,到这里我们可以往回看下,我们在初始化Handler的时候,Handler构造函数里面从当前Looper里面得到了MessageQueue对象,而我们添加消息到消息队列中的时候也是通过这个MessageQueue对象回调函数而实现的,由此可见,只要我们获取到当前Looper对象就能拿到MessageQueue对象,也就意味着能拿到消息队列中的Message。
在ActivityThread主线程中,由main函数,当主线程构建的时候就会执行这个函数,如下:
public static void main(String[] args) {
Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
// Install selective syscall interception
AndroidOs.install();
// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);
Environment.initForCurrentUser();
// Make sure TrustedCertificateStore looks in the right place for CA certificates
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
// Call per-process mainline module initialization.
initializeMainlineModules();
Process.setArgV0("<pre-initialized>");
Looper.prepareMainLooper();
// Find the value for {@link #PROC_START_SEQ_IDENT} if provided on the command line.
// It will be in the format "seq=114"
long startSeq = 0;
if (args != null) {
for (int i = args.length - 1; i >= 0; --i) {
if (args[i] != null && args[i].startsWith(PROC_START_SEQ_IDENT)) {
startSeq = Long.parseLong(
args[i].substring(PROC_START_SEQ_IDENT.length()));
}
}
}
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
由上可知,main函数会初始化Looper.loop()函数,这个函数里面有个死循环,循环接受Message Queue里面的消息(Message),如下:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
if (me.mInLoop) {
Slog.w(TAG, "Loop again would have the queued messages be executed"
+ " before this one completed.");
}
me.mInLoop = true;
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
//得到消息队列中的消息
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
//回调此函数就会回调Handler里面的handleMessage函数
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
由上面代码可知,我们初始化Handler时,如下的handleMessage回调函数是通过上面msg.target.dispatchMessage(msg);函数去实现的,这个target你可以再去看看Handler里面就知道,
其实这个值就是当前初始化的Handler对象。
private Handler mHandler=new Handler(){
@Override
public void handleMessage(@NonNull Message msg) {
super.handleMessage(msg);
}
};
/**
* Handle system messages here.
*/
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
到这里,Handler机制的流程与原理我们也就弄通了。
总结:
由上面分析的流程我们可以得出一下几点:
- Handler消息最终处理还是在主线程中处理的
- Handler消息队列其实是按消息插入的时间进行排队并先进先处理的
- Handler机制也是使用锁去同步消息的
- Looper在主线程中是唯一的,一个线程只有一个Looper
- 由于Looper是在主线程初始化的,他在主线程是运行的,所以looper内回调执行的handlemessage也是在主线程力执行的,由此可知使用handler更新UI也是在主线程里更新UI。
刚开始写博客,可能有些地方介绍不清,理解有问题,各位大佬发现了,请多多指教,谢谢!