关键字-分节16(union及大小端)

本文详细介绍了C++中union关键字的用法及特点,包括union如何节省内存空间、成员共享同一段内存区域等特性,并通过实例解析了不同系统下大小端模式对union数据存储的影响。
union 关键字的用法与struct 的用法非常类似。
union 维护足够的空间来置放多个数据成员中的“一种”,而不是为每一个数据成员配置 空间,在union 中所有的数据成员共用一个空间,同一时间只能储存其中一个数据成员,所 有的数据成员具有相同的起始地址。例子如下: union StateMachine {
char character; int number; char *str; double exp; };
一个union 只配置一个足够大的空间以来容纳最大长度的数据成员,以上例而言,最大 长度是double 型态,所以StateMachine 的空间大小就是double 数据类型的大小。

在C++里,union 的成员默认属性页为public。union 主要用来压缩空间。如果一些数据 不可能在同一时间同时被用到,则可以使用union。

大小端模式对union 类型数据的影响

下面再看一个例子: union { int i; char a[2]; }*p, u; p =&u;
p->a[0] = 0x39; p->a[1] = 0x38;
p.i 的值应该为多少呢?
这里需要考虑存储模式:大端模式和小端模式。
大端模式(Big_endian):字数据的高字节存储在低地址中,而字数据的低字节则存放 在高地址中。
小端模式(Little_endian):字数据的高字节存储在高地址中,而字数据的低字节则存放 在低地址中。
union 型数据所占的空间等于其最大的成员所占的空间。对union 型的成员的存取都是 相对于该联合体基地址的偏移量为0 处开始,也就是联合体的访问不论对哪个变量的存取都 是从union 的首地址位置开始。如此一解释,上面的问题是否已经有了答案呢?
如何用程序确认当前系统的存储模式?

上述问题似乎还比较简单,那来个有技术含量的:请写一个C 函数,若处理器是 Big_endian 的,则返回0;若是Little_endian 的,则返回1。
先分析一下,按照上面关于大小端模式的定义,假设int 类型变量i 被初始化为1。 以大端模式存储,其内存布局如下图: 以小端模式存储,其内存布局如下图:
变量i 占4 个字节,但只有一个字节的值为1,另外三个字节的值都为0。如果取出低
地址上的值为0,毫无疑问,这是大端模式;如果取出低地址上的值为1,毫无疑问,这是 小端模式。既然如此,我们完全可以利用union 类型数据的特点:所有成员的起始地址一致。 到现在,应该知道怎么写了吧?参考答案如下: int checkSystem( ) {
union check { int i; char ch; } c; c.i = 1;
return (c.ch ==1); }
现在你可以用这个函数来测试你当前系统的存储模式了。当然你也可以不用函数而直 接去查看内存来确定当前系统的存储模式。如下图:
图中0x01 的值存在低地址上,说明当前系统为小端模式。
不过要说明的一点是,某些系统可能同时支持这两种存储模式,你可以用硬件跳线或 在编译器的选项中设置其存储模式。

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "can.h" #include "gpio.h" #include "string.h" #include "stm32f4xx_hal.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ typedef struct { uint8_t data[16]; // 直接使用 16 字节的数组填充构成 16字节的结构体 }CAN_struct;//储存发送或接收的16字节数据 typedef union { float a; uint8_t megt[16];//megt 无符号字符数组成员名,在共用体里和float类型成员共享内存,实现浮点数与字节数组的转换(硬件不能直接解析,逐字节发送再转换成float;必须把float拆成字节数组填入,接收方再按协议还原) }Unionfloat; typedef union//16字节结构体与字节数组转换,让数据适配硬件通信,存储,协议,(与上述float类似) { CAN_struct DATAStruct;//共用体成员名 uint8_t send[16]; }Union_struct; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ CAN_RxHeaderTypeDef Rxhader; //Rxhader:存储接收到的 CAN 消息的头部信息(说明书身份卡)(告诉系统谁发的,发给谁,ID,标准帧,扩展帧,DLC,远程帧标记,反馈错误状态,时间戳) uint8_t RxData[8]; //RxData:用于存储接收到的 CAN 数据 float receivedFloat; //receivedFloat:用于存储接收到的浮点数 uint8_t rxframer=0; //rxframer:用于标记是否接收到完整的16字节数据。防止数据丢包错位,数据越界,解析乱码//rxframer为0(未收全)为1(收全)【后面先判断是否为1,再决定是否解析数据】 uint8_t structBuffer[16]={0}; //structBuffer:用于存储接收到的16字节结构体数据。数组所有元素初始化为0,不会被旧数据干扰 uint8_t buffer[8]; //buffer:用于临时存储接收到的8字节数据。防止没处理完数据就丢了 Unionfloat receiveunionfloat; //receiveunionfloat:用于将接收到的字节数组转换为浮点数。 Union_struct receiveunionstruct; //receiveunionstruct:用于将接收到的字节数组转换为16字节结构体。 CAN_struct receiveStruct; //receiveStruct:用于存储接收到的16字节结构体数据。 CAN_struct h; //h:用于存储要发送的16字节结构体数据。 /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ void MyCAN_Transmit_struct(CAN_struct* shuatment); void MyCAN_Transmit_Float(float data); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void MyCAN_Transmit_Float(float data) //发送浮点数data { Unionfloat transmitUnionfloat; //共用体定义变量transmitUnionfloat transmitUnionfloat.a=data; //data赋值给联合体成员a,transmitUnionfloat.megt就会存储对应浮点数的字节形式,实现浮点数到字节数组的转换 uint32_t TxMailbox; //存储CAN发送邮箱编号,HAL_CAN_AddTxHeaderTypeDef会用到,告知数据放到哪个发送邮箱 uint32_t TimeOut=0; //初始化超时计数器为0 CAN_TxHeaderTypeDef TxMessage; //CAN_TxHeaderTypeDef类型结构体,用来配置CAN发送报文的头部信息(ID,数据长度,帧类型) //配置CAN发送头部信息 TxMessage.StdId = 0x555; TxMessage.ExtId = 0x0000; TxMessage.IDE = CAN_ID_STD; TxMessage.RTR = CAN_RTR_DATA; //浮点型用数据帧 TxMessage.DLC = 4; //浮点数转4字节数据 TxMessage.TransmitGlobalTime = DISABLE;//关闭全局时间戳功能,发送报文时不附加全局时间信息 //把配置好的报文(TxMessage)和要发送的数据(transmitUnionfloat.megt浮点数转字节数组)放到hcan1对应的CAN外设发送邮箱(TxMailbox),函数返回HAL_StatusTypeDef类型状态 HAL_StatusTypeDef state=HAL_CAN_AddTxMessage(&hcan1, &TxMessage,transmitUnionfloat.megt , &TxMailbox);//状态(发送邮箱) while(state!= HAL_OK) //state!= HAL_OK放入邮箱失败,进入循环重新尝试/检测超时 //HAL_OK成功放入邮箱等待发送 { TimeOut++; if (TimeOut > 100000) //计数器超过100000,认为发送失败,跳出循环 { break; } } } //发送16字节结构体数据 void MyCAN_Transmit_struct(CAN_struct* shuatment) //参数是CAN_struct类型指针shuatment,接收要发送的结构体数据,发送出去 { uint32_t TimeOut=0; uint32_t TxMailbox; Union_struct tx_struct; //Union_struct类型变量定义tx_struct //sizeof(CAN_struct)确保拷贝长度整个结构体大小,数据从入参到共用体变量的转移 memcpy(&tx_struct.DATAStruct, shuatment, sizeof(CAN_struct));//调用memcpy函数(string.h里的内存拷贝函数),把shuatment指针指向CAN_struct结构体内容,拷贝到tx_struct的DATAstruct成员里 CAN_TxHeaderTypeDef TxMessage; //CAN发送头部配置 TxMessage.StdId = 0x666; TxMessage.ExtId = 0x0000; TxMessage.IDE = CAN_ID_STD; TxMessage.RTR = CAN_RTR_DATA; //结构体数据帧 TxMessage.DLC = 8; //一次发送八字节 TxMessage.TransmitGlobalTime = DISABLE; //第一次发送报文 HAL_StatusTypeDef status =HAL_CAN_AddTxMessage(&hcan1, &TxMessage, tx_struct.send, &TxMailbox); while(status!= HAL_OK) { TimeOut++; if (TimeOut > 100000) { break; } } TxMessage.StdId = 0x777; //第二次发送报文(补发或分段发) HAL_CAN_AddTxMessage(&hcan1, &TxMessage, &tx_struct.send[8], &TxMailbox);//发送后续8个字节 while(status!= HAL_OK) { TimeOut++; if (TimeOut > 100000) { break; } } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CAN1_Init(); /* USER CODE BEGIN 2 */ for(int i=0;i<16;i++)//初始化一个16字节结构体数据 h { // CAN_struct h; h.data[i]=i; } /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ MyCAN_Transmit_Float(3.14f); //发送浮点数 MyCAN_Transmit_struct(&h); //发送结构体数据 while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 192; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV4; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ uint8_t count=0; void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan1) //CAN 接收FIFO0消息挂起回调函数,处理接收到的数据 { count++; //每收到一条CAN消息就自增1,统计接收报文的次数 Unionfloat floatBuff; if(HAL_CAN_GetRxMessage(hcan1,CAN_RX_FIFO0,&Rxhader,buffer)==HAL_OK) //buffer收到的实际字节数据存在这里 { if(Rxhader.StdId==0x555) //准备转成float数据 { memcpy(floatBuff.megt,buffer,sizeof(floatBuff.megt)); receivedFloat = floatBuff.a; //存储接收到的浮点数 } if(Rxhader.StdId==0x666) { memcpy(structBuffer,buffer,8); //buffer里的八字节数据拷贝到structBuffer rxframer=1; //接收到分片等待拼接,下一步处理拼接逻辑 } if((Rxhader.StdId==0x777)&&rxframer==1) //两个同时满足 { memcpy(&structBuffer[8],buffer,8); //拷到前8个字节后面 memcpy(receiveunionstruct.send,structBuffer,16); //16字节数据拷到send数组成员里 receiveStruct=receiveunionstruct.DATAStruct; //存储接收到的结构体 rxframer=0; //分片处理完毕等待下一次 } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */
最新发布
06-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值